66 reads in the past 30 days
Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospectsNovember 2024
·
302 Reads
·
18 Citations
Published by Taylor & Francis
Online ISSN: 1949-0984
·
Print ISSN: 1949-0976
66 reads in the past 30 days
Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospectsNovember 2024
·
302 Reads
·
18 Citations
57 reads in the past 30 days
Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in a hamster model of COVID-19April 2025
·
57 Reads
55 reads in the past 30 days
Current insights on gut microbiome and chronic urticaria: progress in the pathogenesis and opportunities for novel therapeutic approachesJuly 2024
·
253 Reads
·
4 Citations
55 reads in the past 30 days
Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonizationApril 2025
·
55 Reads
54 reads in the past 30 days
The contribution of age-related changes in the gut-brain axis to neurological disordersJanuary 2024
·
669 Reads
·
16 Citations
Gut Microbes publishes research on intestinal microbiota, and its role in gastrointestinal, liver, cardiac disease, cancer, and irritable and inflammatory bowel conditions.
For a full list of the subject areas this journal covers, please visit the journal website.
April 2025
·
1 Read
Katherine M Kennedy
·
Andreas Plagemann
·
Julia Sommer
·
[...]
·
Deborah M Sloboda
April 2025
·
4 Reads
The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota–host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease. Recent work has identified a role for microbiota-sourced purines (MSPs), notably hypoxanthine, as an MDM salvaged by the colonic epithelium for nucleotide biogenesis and energy balance. Here, we investigated the role of MSPs in mice during disease-modeled colonic energetic stress using a strain of E. coli genetically modified for enhanced purine nucleobase release (E. coli Mutant). E. coli Mutant colonization protected against DSS-induced tissue damage and permeability while promoting proliferation for wound healing. Metabolite and metagenomic analyses suggested a colonic butyrate-purine nucleobase metabolic axis, wherein the E. coli Mutant provided purine substrate for Clostridia butyrate production and host purine salvage, altogether supplying the host substrate for efficient nucleotide biogenesis and energy balance.
April 2025
·
10 Reads
April 2025
·
4 Reads
The gut microbiota produces short-chain fatty acids (SCFA) and acidifies the proximal colon which inhibits enteric pathogens. However, for many microbiota constituents, how they themselves resist these stresses is unknown. The anaerobic Lachnospiraceae family, which includes the acetogenic genus Blautia, produce SCFA, are genomically diverse, and vary in their capacity to acidify culture media. Here, we investigated how Lachnospiraceae tolerate pH stress and found that subunits of urease were associated with acidification in a random forest model. Urease cleaves urea into ammonia and carbon dioxide, however the role of urease in the physiology of Lachnospiraceae is unknown. We demonstrate that urease-encoding Blautia show urea-dependent changes in SCFA production, acidification, growth, and, strikingly, urease encoding Blautia directly incorporate the carbon from urea into SCFAs. In contrast, ureolytic Klebsiella pneumoniae or Proteus mirabilis do not show the same urea-dependency or carbon salvage. In agreement, the combination of urease and acetogenesis functions is rare in gut taxa. We find that Lachnospiraceae urease and acetogenesis genes can be co-expressed in healthy individuals and colonization of mice with a ureolytic Blautia reduces urea availability in colon contents demonstrating Blautia urease activity in vivo. In human and mouse microbial communities, the acetogenic recycling of urea carbon into acetate by Blautia leads to the incorporation of urea carbon into butyrate indicating carbon salvage into broader metabolite pools. Altogether, this shows that urea plays a central role in the physiology of health-associated Lachnospiraceae which use urea in a distinct manner that is different from that of ureolytic pathogens.
April 2025
·
2 Reads
Gut microbiota have been shown to influence the social behaviors of their hosts, while variations in host genetics can affect the composition of the microbiome. Nonetheless, the degree to which genetic variations in microbial populations impact host behavior, as well as any potential transgenerational effects, remains inadequately understood. Utilizing C. elegans as a model organism, we identified 77 strains of E. coli from a total of 3,983 mutants that significantly enhanced aggregation behavior through various neurobehavioral pathways. This discovery underscores a collaborative regulatory mechanism between microbial genetics and host behavior. Notably, we observed that some mutant bacteria might affect social behavior via the mitochondrial pathway. Additionally, the modulation of social behavior has been identified as a heritable trait in offspring. Our results provide a novel perspective on the regulatory role of microbial genetic variation in host behavior, which may have significant implications for human studies and the development of genetically engineered probiotics aimed at enhancing well-being across generations.
April 2025
·
28 Reads
Reliable engraftment assessment of donor microbial communities and individual strains is an essential component of characterizing the pharmacokinetics of microbiota transplant therapies (MTTs). Recent methods for measuring donor engraftment use whole-genome sequencing and reference databases or metagenome-assembled genomes (MAGs) to track individual bacterial strains but lack the ability to disambiguate DNA that matches both donor and patient microbiota. Here, we describe a new, cost-efficient analytic pipeline, MAGEnTa, which compares post-MTT samples to a database comprised MAGs derived directly from donor and pre-treatment metagenomic data, without relying on an external database. The pipeline uses Bayesian statistics to determine the likely sources of ambiguous reads that align with both the donor and pre-treatment samples. MAGEnTa recovers engrafted strains with minimal type II error in a simulated dataset and is robust to shallow sequencing depths in a downsampled dataset. Applying MAGEnTa to a dataset from a recent MTT clinical trial for ulcerative colitis, we found the results to be consistent with 16S rRNA gene SourceTracker analysis but with added MAG-level specificity. MAGEnTa is a powerful tool to study community and strain engraftment dynamics in the development of MTT-based treatments that can be integrated into frameworks for functional and taxonomic analysis.
April 2025
·
8 Reads
Liver injury is an independent risk factor for multiple organ dysfunction and high mortality in patients with sepsis. However, the pathological mechanisms and therapeutic strategies for sepsis-associated liver injury have not been fully elucidated. Time-restricted feeding (TRF) is a promising dietary regime, but its role in septic liver injury remains unknown. Using 16S rRNA gene sequencing, Q200 targeted metabolomics, transcriptomics, germ-free mice, Hmgcs2/Lpin1 gene knockout mice, and Aml12 cells experiments, we revealed that TRF can mitigate septic liver injury by modulating the gut microbiota, particularly by increasing Lactobacillus murinus (L. murinus) abundance, which was significantly reduced in septic mice. Further study revealed that live L. murinus could markedly elevate serum levels of metabolite 3-hydroxybutyrate (3-HB) and alleviate sepsis-related injury, while the knockout of the key enzyme for 3-HB synthesis (3-hydroxy-3-methylglutaryl-CoA synthase 2, Hmgcs2) in the liver negated this protective effect. Additionally, serum 3-HB levels were significantly positively correlated with L. murinus abundance and negatively correlated with liver injury indicators in septic patients, demonstrating a strong predictive value for septic liver injury (AUC = 0.8429). Mechanistically, 3-HB significantly inhibited hepatocyte ferroptosis by activating the PI3K/AKT/mTOR/LPIN1 pathway, reducing ACSL4, MDA, LPO, and Fe²⁺ levels. This study demonstrates that TRF reduces septic liver injury by modulating gut microbiota to increase L. murinus, which elevates 3-HB to activate PI3K/AKT/mTOR/LPIN1 and inhibit hepatocyte ferroptosis. Overall, this study elucidates the protective mechanism of TRF against septic liver injury and identifies 3-HB as a potential therapeutic target and predictive biomarker, thereby providing new insights into the clinical management and diagnosis of septic liver injury.
April 2025
·
3 Reads
Fusobacterium nucleatum (F. nucleatum) has emerged as a potential contributor to ulcerative colitis (UC) pathogenesis, although the specific mechanisms remain incompletely understood. This study demonstrates that F. nucleatum promotes colitis by disrupting intestinal barrier integrity, inducing apoptosis in epithelial cells, and modulating inflammatory pathways. Furthermore, we demonstrate that F. nucleatum promotes STAT3 acetylation at K685, followed by phosphorylation at Y705, thereby enhancing its transcriptional activity and exacerbating colitis severity. Additionally, F. nucleatum-mediated upregulation of acetyl-CoA levels is responsible for STAT3 acetylation, linking metabolic processes to UC pathophysiology. Pharmacological inhibition of acetyl-CoA production effectively mitigates F. nucleatum-induced colitis in experimental models, suggesting potential therapeutic strategies targeting these pathways. These findings unveil a novel regulatory pathway in F. nucleatum-associated UC progression and offer new insights for future UC prevention and treatment.
April 2025
·
16 Reads
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is considered significant global health concerns worldwide. Many studies have demonstrated that environmental and dietary factors influence the gut microbiota, which in turn orchestrates the host immune responses. These interactions are also involved in complex metabolic processes that contribute to the pathogenesis of IBD. Furthermore, recent studies in genomics and metabolomics have unveiled the intricate relationship between microbial influencers and host epigenetics. The dynamics of gut microbiota and its metabolites intricately align with DNA methylation, histone methylation, lactylation, glycosylation, and non-coding RNAs, which are key players in epigenetics. Here, we summarize and discuss the complex interplay among gut microbiota, epigenetics, and environmental and dietary factors, and their impact on the pathogenesis of IBD. Furthermore, we highlight the importance of multi-omics technologies in dissecting the host-microbe interactions in IBD, potentially offering a framework for developing effective treatment strategies.
April 2025
·
32 Reads
Osteoarthritis (OA) is a degenerative joint disease primarily characterized by cartilage degeneration. Increasing evidence suggests that there is an interplay between the gut microbiota (GM) and joint health, known as the gut-joint axis. In recent years, with the advancement of bacterial extracellular vesicles (BEVs) research, its role in the gut-joint axis has attracted increasing attention. BEVs are phospholipid bilayer nanocarriers with sizes ranging from 20 to 400 nm, which can deliver various bioactive molecules to modulate the intestinal and joint microenvironments. Due to nanoscale structure, low toxicity, high drug loading capacity, good biocompatibility, easy modification, and industrialization, BEVs are promising for OA treatment. Here, we reviewed the research status of BEVs including biogenies, classification, structures, and composition, and summarized the cargo within BEVs that is associated with OA. The application of natural BEVs in the treatment of OA is the core, and the separation, purification, and modification strategies for engineered BEVs are summarized. Finally, we provide an overview and prospects of the role of BEVs in the clinical diagnosis and treatment of OA. We hope that a comprehensive understanding of BEVs will provide new solutions for OA treatment.
April 2025
·
23 Reads
The gut–brain axis (GBA) denotes the dynamic and bidirectional communication system that connects the gastrointestinal tract and the central nervous system (CNS). This review explored this axis, focusing on the role of microbial diversity and fitness in maintaining gastrointestinal health and preventing neurodegeneration, particularly in Alzheimer’s disease (AD). Gut dysbiosis, characterized by the imbalance in populations of beneficial and harmful bacteria, has been associated with increased systemic inflammation, neuroinflammation, and the progression of AD through pathogenic mechanisms involving amyloid deposition, tauopathy, and increased blood–brain barrier (BBB) permeability. Emerging evidence highlighted the therapeutic potential of probiotics, dietary interventions, and intermittent fasting in restoring microbial balance, reducing inflammation, and minimizing neurodegenerative risks. Probiotics and synbiotics are promising in helping improve cognitive function and metabolic health, while dietary patterns like the Mediterranean diet were linked to decreased neuroinflammation and enhanced gut–brain communication. Despite significant advancement, further research is needed to elucidate the specific microbial strains, metabolites, and mechanisms influencing brain health. Future studies employing longitudinal designs and advanced omics technologies are essential to developing targeted microbiome-based therapies for managing AD-related disorders.
April 2025
·
10 Reads
Necrotizing enterocolitis (NEC) remains a frequent catastrophic disease in preterm infants, and fecal filtrate transfer (FFT) has emerged as a promising prophylactic therapy. This study explored the role of virome viability for the protective effect of FFT. Using ultraviolet (UV) irradiation, we established a viral inactivation protocol and administered FFT, UV-inactivated FFT (iFFT) or sterile saline orally to preterm piglets at risk for experimental NEC. The gut pathology and barrier properties were assessed, while the microbiome was explored by 16S rRNA amplicon and metavirome sequencing. Like in prior studies, FFT reduced NEC severity and intestinal inflammation, while these effects were absent in the iFFT group. Unexpectedly, piglets receiving FFT exhibited mild side effects in the form of early-onset diarrhea. The FFT also converged the gut colonization by increased viral heterogeneity and a reduced abundance of pathobionts like Clostridium perfringens and Escherichia. In contrast, the gut microbiome of iFFT recipients diverged from both FFT and the controls. These findings highlight the clear distinction between the ability of active and inactivate viromes to modulate gut microbiota and decrease pathology. The efficacy of FFT may be driven by active bacteriophages, and loss of virome activity could have consequences for the treatment efficacy.
April 2025
·
55 Reads
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
April 2025
·
6 Reads
Ionizing radiation-induced intestinal injury (IRIII) is a catastrophic disease lack of sufficient medical countermeasures currently. Regulation of the gut microbiota through dietary adjustments is a potential strategy to mitigate IRIII. Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention with pleiotropic health benefits. Whether this dietary pattern influences the pathogenesis of IRIII remains vague. We evaluated the impact of TRF on intestinal radiosensitivity in this study and discovered that only daytime TRF (DTRF), not nighttime TRF, could ameliorate intestinal damage in mice that received a high dose of IR. Faecal metagenomic and metabolomic studies revealed that the intestinal creatine level was increased by approximate 9 times by DTRF, to which the Bifidobacterium pseudolongum enrichment contribute. Further investigations showed that creatine could activate the energy sensor AMP-activated protein kinase in irradiated enterocytes and induce phosphorylation of acetyl-CoA carboxylase, resulting in reduced production of polyunsaturated fatty acids and reduced ferroptosis after IR. The administration of creatine mitigated IRIII and reduced bacteremia and proinflammatory responses. Blockade of creatine import compromised the ferroptosis inhibition and mitigation of DTRF on IRIII. Our study demonstrates a radioprotective dietary mode that can reshape the gut microbiota and increase intestinal creatine, which can suppress IR-induced ferroptosis, thereby providing effective countermeasures for IRIII prevention.
April 2025
·
27 Reads
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn’s Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10–15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
April 2025
·
16 Reads
Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'−SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with Bifidobacterium infantis (B. infantis) for UC. The findings reveal that 3'-SL and B. infantis synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, B. infantis, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.
April 2025
·
11 Reads
Radiation-associated hematopoietic recovery (RAHR) is critical for mitigating lethal complications of acute radiation syndrome (ARS), yet therapeutic strategies remain limited. Through integrated multi-omics analysis of a total body irradiation (TBI) mouse model, we identify Bacteroides acidifaciens-dominated gut microbiota as key mediators of RAHR impairment. 16S ribosomal rRNA sequencing revealed TBI-induced dysbiosis characterized by Bacteroidaceae enrichment, while functional metagenomics identified raffinose metabolism as the most significantly perturbed pathway. Notably, raffinose supplementation (10% w/v) recapitulated radiation-induced microbiota shifts and delayed bone marrow recovery. Fecal microbiota transplantation (FMT) revealed a causative role for raffinose-metabolizing microbiota, particularly Bacteroides acidifaciens, in delaying RAHR progression. Mechanistically, B. acidifaciens-mediated bile acid deconjugation activated FXR, subsequently suppressing NF-κB-dependent hematopoietic recovery. Therapeutic FXR inhibition via ursodeoxycholic acid (UDCA) had been shown to be a viable method for rescuing RAHR. Our results delineated a microbiome-bile acid-FXR axis as a master regulator of post-irradiation hematopoiesis. Targeting B. acidifaciens or its metabolic derivatives could represent a translatable strategy to mitigate radiation-induced hematopoietic injury.
April 2025
·
14 Reads
The role of xenobiotic disruption of microbiota, corresponding dysbiosis, and potential links to host metabolic diseases are of critical importance. In this study, we used a widely prescribed antipsychotic drug, risperidone, known to influence weight gain in humans, to induce weight gain in C57BL/6J female mice. We hypothesized that microbes essential for maintaining gut homeostasis and energy balance would be depleted following treatment with risperidone, leading to enhanced weight gain relative to controls. Thus, we performed metagenomic analyses on stool samples to identify microbes that were excluded in risperidone-treated animals but remained present in controls. We identified multiple taxa including Limosilactobacillus reuteri as a candidate for further study. Oral supplementation with L. reuteri protected against risperidone-induced weight gain (RIWG) and was dependent on cellular production of a specialized metabolite, reutericyclin. Further, synthetic reutericyclin was sufficient to mitigate RIWG. Both synthetic reutericyclin and L. reuteri restored energy balance in the presence of risperidone to mitigate excess weight gain and induce shifts in the microbiome associated with leanness. In total, our results identify reutericyclin production by L. reuteri as a potential probiotic to restore energy balance induced by risperidone and to promote leanness.
April 2025
·
11 Reads
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
April 2025
·
28 Reads
Migration is associated with a substantial change in environmental exposures and health outcomes. We aimed to investigate the shift in gut microbiota composition and the associations with cardiometabolic outcomes in the RODAM-Pros cohort spanning multiple research sites across continents. We determined gut microbiota composition of 1,177 Ghanaian participants in rural Ghana, urban Ghana, and Amsterdam, the Netherlands, using 16S rRNA sequencing. We observed a clear gradient in gut microbiota composition and alpha and beta diversity from rural Ghana to urban Ghana, to Amsterdam. We used pairwise XGBoost machine learning classification models to identify which microbes were most distinct between locations in prevalence and abundance. The associations between these microbes and the locations could partly be explained by differences in confounders such as dietary intake. Groups of microbes that emerged or disappeared along the migration axis were associated with cardiometabolic outcomes, including higher body mass index, higher HbA1c and higher diastolic blood pressure. Concluding, we identified associations between a shift in gut microbiota composition and cardiometabolic risk along the migration axis, underscoring the relevance of gut health in the context of migration-associated adverse health outcomes.
April 2025
·
40 Reads
The human gut microbiota has gained interest as an environmental factor that contributes to health or disease. The development of next-generation live biotherapeutic products (LBPs) is a promising strategy to modulate the gut microbiota and improve human health. In this study, we identified a novel cross-feeding interaction between Bacteroides xylanisolvens and Clostridium butyricum and developed their combination into a novel LBP for treating metabolic syndrome. Using in-silico analysis and in vitro experiments, we demonstrated that B. xylanisolvens supported the growth and butyrate production of C. butyricum by supplying folate, while C. butyricum reciprocated by providing pABA for folate biosynthesis. Animal gavage experiments showed that the two-strain combination LBP exhibited superior therapeutic efficacy against metabolic disorders in high-fat diet-induced obese (DIO) mice compared to either single-strain treatment. Further omics-based analyses revealed that the single-strain treatments exhibited distinct taxonomic preferences in modulating the gut microbiota, whereas the combination LBP achieved more balanced modulation to preserve taxonomic diversity to a greater extent, thereby enhancing the stability and resilience of the gut microbiome. Moreover, the two-strain combinations more effectively restored gut microbial functions by reducing disease-associated pathways and opportunistic pathogen abundance. This work demonstrates the development of new LBP therapy for metabolic diseases from cross-feeding microbial pairs which exerted better self-stability and robust efficacy in complex intestinal environments compared to conventional single-strain LBPs.
April 2025
·
26 Reads
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA’s in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
April 2025
·
17 Reads
Severe acute pancreatitis (SAP)-induced intestinal bacterial translocation and enterogenic infection are among the leading causes of mortality in patients. However, the mechanisms by which SAP disrupted the intestinal barrier and led to bacterial translocation remained unclear. Therefore, we employed multi-omics analysis including microbiome, metabolome, epigenome, transcriptome, and mass cytometry (CyTOF) to identify potential targets, followed by functional validation using transgenic mice. The integrated multi-omics analysis primarily indicated overgrowth of intestinal flagellated bacteria, upregulation of intestinal Toll-like receptor 5 (TLR5) and acute inflammatory response, and increased infiltration of intestinal high-expressing TLR5 lamina propria dendritic cells (TLR5hi LPDC) after SAP. Subsequently, intestinal flagellin-TLR5 signaling was activated after SAP. Intestinal barrier disruption, bacterial translocation, and helper T cells (Th) differentiation imbalance caused by SAP were alleviated in TLR5 knocked out (Tlr5−/−) or conditionally knocked out on LPDC (Tlr5ΔDC) mice. However, TLR5 conditional knockout on intestinal epithelial cells (Tlr5ΔIEC) failed to improve SAP-induced bacterial translocation. Moreover, depletion of LPDC and regulatory T cells (Treg) ameliorated bacterial translocation after SAP. Our findings identify TLR5 on LPDC as a potential novel target for preventing or treating intestinal bacterial translocation caused by SAP.
April 2025
·
10 Reads
The human gut microbiome, crucial in various diseases, can be utilized to develop diagnostic models through machine learning (ML). The specific tools and parameters used in model construction such as data preprocessing, batch effect removal and modeling algorithms can impact model performance and generalizability. To establish an generally applicable workflow, we divided the ML process into three above-mentioned steps and optimized each sequentially using 83 gut microbiome cohorts across 20 diseases. We tested a total of 156 tool-parameter-algorithm combinations and benchmarked them according to internal- and external- AUCs. At the data preprocessing step, we identified four data preprocessing methods that performed well for regression-type algorithms and one method that excelled for non-regression-type algorithms. At the batch effect removal step, we identified the “ComBat” function from the sva R package as an effective batch effect removal method and compared the performance of various algorithms. Finally, at the ML algorithm selection step, we found that Ridge and Random Forest ranked the best. Our optimized work flow performed similarly comparing with previous exhaustive methods for disease-specific optimizations, thus is generally applicable and can provide a comprehensive guideline for constructing diagnostic models for a range of diseases, potentially serving as a powerful tool for future medical diagnostics.
April 2025
·
44 Reads
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Journal Impact Factor™
Acceptance rate
CiteScore™
Submission to first decision
SNIP
SJR
Editor