168 reads in the past 30 days
Chemical composition, antimicrobial, and antioxidant properties of essential oils from Artemisia herba-alba asso. and Artemisia huguetii caball. from Morocco: in vitro and in silico evaluationDecember 2024
·
191 Reads
Published by Frontiers
Online ISSN: 2296-2646
Disciplines: Chemistry
168 reads in the past 30 days
Chemical composition, antimicrobial, and antioxidant properties of essential oils from Artemisia herba-alba asso. and Artemisia huguetii caball. from Morocco: in vitro and in silico evaluationDecember 2024
·
191 Reads
126 reads in the past 30 days
Bougainvillea glabra Choisy (Nyctinaginacea): review of phytochemistry and antimicrobial potentialOctober 2023
·
2,402 Reads
·
7 Citations
107 reads in the past 30 days
Phytochemical profiling and fractionation of Helianthemum lippii extract versus silver nanoparticle-modified extract: assessment of photoprotective, anti-hemolytic, antibacterial, and anti-inflammatory propertiesDecember 2024
·
160 Reads
103 reads in the past 30 days
A comparative study of topological entropy characterization and graph energy prediction for Marta variants of covalent organic frameworksDecember 2024
·
103 Reads
78 reads in the past 30 days
Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitorsMay 2024
·
332 Reads
·
9 Citations
Frontiers in Chemistry is a PubMed Central (PMC), Scopus and Web of Science (SCIE) indexed journal that explores the role of chemistry in our everyday lives.
Led by Field Chief Editor Prof Steve Suib (University of Connecticut, USA), Frontiers in Chemistry welcomes original research articles, review articles, commentaries, and ideas about all aspects of chemistry, from electronics and manufacturing to health and well-being. The journal covers all areas of the chemical sciences and aims to advance our understanding of how atoms, ions, and molecules come together and come apart.
Frontiers in Chemistry covers a wide range of topics including, but not limited to:
Collaborative research across areas of Chemistry is highly encouraged, particularly those covering specific subdisciplines such as analytical, inorganic, organic and physical chemistries. The journal actively welcomes submissions which support and advance the UN’s Sustainable Development Goals (SDGs), notably SDG 9: industry, innovation and infrastructure.
Manuscripts that focus primarily on biological or medical applications, such as cell culture studies, cancer research, tissue engineering, or drug delivery systems, are not suitable for publication in this journal. Similarly, studies that are primarily concerned with the physical properties of materials, such as Fourier transform or photoelectron spectroscopy, without a relevance to chemical principles or reactions, are also outside the scope of this journal.
Frontiers in Chemistry is committed to advancing developments in the field by allowing unrestricted access to articles and communicating scientific knowledge to researchers and the public alike, to enable the scientific breakthroughs of the future.
Authors are encouraged to submit the Characterization Checklist alongside their manuscript (.xlsx file). This will not be published, but helps Review Editors and Associate Editors to assess the completeness of the presented data.
Frontiers in Chemistry is member of the Committee on Publication Ethics.
January 2025
·
19 Reads
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination. This review examines recent advancements in SAMs for PVSCs, focusing on three key areas: anchoring groups and interface engineering, electronic structure modulation as well as band alignment, and stability optimization. We emphasize the role of anchoring groups in reducing defects and improving crystallinity, alongside the ability of SAMs to fine-tune energy levels for more effective hole extraction. Additionally, co-adsorbed SAM strategies was discussed which can enhance the durability of PVSCs against thermal and moisture degradation. Overall, SAMs present a promising avenue for addressing both efficiency and stability challenges in PVSCs, paving the way toward commercial viability. Future research should prioritize long-term environmental durability and the scaling up of SAM applications for industrial implementation.
January 2025
·
2 Reads
January 2025
·
5 Reads
A highly efficient and widely applicable adsorbent for the removal of methylene blue (MB) was created using nitrogen-doped and reduced graphene oxide (NRGO). The effects of NRGO mass, pH, contact time, and the initial MB concentration on the adsorption properties of MB onto NRGO were investigated. The results showed that the adsorption behavior remained stable within the pH range of 2.0–10.0, and the adsorption process gradually reached equilibrium after 24 h. Additionally, the adsorption kinetics and adsorption isotherms were discussed to propose a theoretical adsorption mechanism. Meanwhile, some characterizations including Scanning Electron Microscopy, Energy Disperse X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy, etc. were used to explore potential adsorption mechanism, which indicated the physisorption caused by π-π bonds was the main adsorption mechanism. NRGO exhibits efficient MB absorption and holds significant potential application for the wastewater treatment.
January 2025
·
3 Reads
Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges. In this work, whey is considered a valuable resource for producing high-value products, specifically 2,3-butanediol (2,3-BDO), which was produced through fermentation using the bacterial strain Lactococcus lactis 43103. The described process yielded a >90% purity of 2,3-BDO, which was evaluated as a potential chain extender in the synthesis of bio-based waterborne polyurethane dispersions (PUDs). The incorporation of whey-derived 2,3-BDO led to the development of PUDs with up to 90% bio-based content without detrimental effects on the process or liquid-phase properties. The combination of 100% bio-based polyether polyols with partially renewable L-lysine ethyl ester diisocyanate and whey-derived 2,3-BDO as a chain extender generated totally stable, low-particle-size water dispersions of amorphous polymers characterised by similar structure and molecular weight compared to those of alternative petroleum-based PUDs. These results open up the possibility of incorporating fermentation-derived 2,3-BDO as a totally renewable component in bio-based PUDs as potential sustainable resinous systems for further formulation of water-based coatings or adhesives.
January 2025
·
6 Reads
The use of green solvents, citric acid (CA), and natural deep eutectic solvents (NADES) for the obtention of pectin from wastes (pulp and peel) of Malus domestica was studied. The NADES used comprised citric acid–glucose–water (N1) or lactic acid–glucose–water (N2). The fractions rich in pectin obtained after exposure to NADES showed lower yield (≈4 g/100 g CA vs. ≈ 11 g/100 g CA), equal to or lower degree of methoxylation (53–71 mol/100 mol CA vs. 73 mol/100 mol CA), equal to or greater content of uronic acid (50–63 g/100 g CA vs. 51 g/100 g CA) than those isolated with CA, and the ones obtained from peel were the most thermally stable. These pectins showed greater linearity, shorter branch lengths, and lower arabinose content than those obtained with CA. The neutral sugars present in the highest concentration in all the isolated fractions were arabinose, xylose, galactose, and rhamnose. Glucose was also detected, probably due to contamination with starch. Their aqueous solutions showed pseudoplastic behavior. The effect of ultrasound assistance was preliminarily evaluated in the production of pectic fractions using N2, observing higher yields (13–18 g/100 g), in general, a higher concentration of uronic acid and a higher degree of methoxylation when compared with the extraction without US. They also showed greater arabinose content (less degradative treatment), lower glucose content (increased purity), and higher rhamnogalacturonan I (RG-I) content. It is known that RG-I is linked to pectin bioactivity and rheological behavior. The green solvent techniques assayed allowed obtaining fractions rich in uronic acid with different chemical, thermochemical, and rheological characteristics. In the case of isolation with NADES, the yield was low, but preliminary tests with ultrasound assistance showed that it is possible to overcome this limitation.
January 2025
·
1 Read
Introduction Whether in industrial production or daily life, froth plays an important role in many processes. Sometimes, froth exists as a necessity and is also regarded as the typical characteristic of products, e.g., froth on shampoo. Froth often makes an important contribution to product performance, such as in cleaning operations. On the other hand, froth may destroy the production process, such as in the textile and paper industry. Another example, ultra-stable froth accumulates on the thickener from flotation brings a series of difficulties to pumping, settling and dewatering operations, and would lead to pollution to the industrial circulating water treatment, thus it must be prevented. Methods In this work, the factors affecting the stability of froth, and relationship of bubble coalescence and film rupture was investigated, and molecular simulations (MD) were performed to study the aqueous molecular formation and surface characteristics of thin films between bubbles that contribute to the froth stability. Results The detailed interfacial structure, molecular formation along Z -axis, angle distribution within the first and second layer, and also critical thickness were studied and discussed. The film rupture was validated and interpreted by the water-water interactions within the thin film, and these surface interactions were also examined using binding energy, dipole autocorrelation function (DAF). These simulations explicitly utilize polarizable potential model, incorporating many-body interactions, in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. Discussion The results provide beneficial insight for ultra-stable removal from microscopic view, and have direct benefits in dissolved air flotation used in mining industry, to develop efficient and sustainable processes for industries to minimize water and chemical usage.
January 2025
·
21 Reads
Cannabinoid and stilbenoid compounds derived from Cannabis sativa were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations. The ligands with the highest binding affinities were identified, and their pharmacokinetic profiles were analyzed using ADMET analysis. The results indicate that GMP synthase exhibited the highest binding affinity with Cannabistilbene I (−9.1 kcal/mol), suggesting hydrophobic solid interactions and multiple hydrogen bonds. Similarly, Chitin Synthase 2 demonstrated significant binding with Cannabistilbene I (−9.1 kcal/mol). In contrast, ligands such as Cannabinolic acid and 8-hydroxycannabinolic acid exhibited moderate binding affinities, underscoring the variability in interaction strengths among different proteins. Despite promising in silico results, experimental validation is necessary to confirm therapeutic potential. This research lays a crucial foundation for future studies, emphasizing the importance of evaluating binding affinities, pharmacokinetic properties, and multi-target interactions to identify promising antifungal agents.
December 2024
·
41 Reads
Introduction Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, Aedes aegypti and Aedes albopictus. While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques. Method Utilizing a dataset of 21,250 bioactive compounds from PubChem (AID: 651640), alongside a total of 1,444 descriptors generated using PaDEL, we trained various models such as Support Vector Machine, Random Forest, k-nearest neighbors, Logistic Regression, and Gaussian Naïve Bayes. The top-performing model was used to predict active compounds, followed by molecular docking performed using AutoDock Vina. The detailed interactions, toxicity, stability, and conformational changes of selected compounds were assessed through protein-ligand interaction studies, molecular dynamics (MD) simulations, and binding free energy calculations. Results We implemented a robust three-dataset splitting strategy, employing the Logistic Regression algorithm, which achieved an accuracy of 94%. The model successfully predicted 18 known DENV inhibitors, with 11 identified as active, paving the way for further exploration of 2683 new compounds from the ZINC and EANPDB databases. Subsequent molecular docking studies were performed on the NS2B/NS3 protease, an enzyme essential in viral replication. ZINC95485940, ZINC38628344, 2′,4′-dihydroxychalcone and ZINC14441502 demonstrated a high binding affinity of −8.1, −8.5, −8.6, and −8.0 kcal/mol, respectively, exhibiting stable interactions with His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 within the active site, which are critical residues involved in inhibition. Molecular dynamics simulations coupled with MMPBSA further elucidated the stability, making it a promising candidate for drug development. Conclusion Overall, this integrative approach, combining machine learning, molecular docking, and dynamics simulations, highlights the strength and utility of computational tools in drug discovery. It suggests a promising pathway for the rapid identification and development of novel antiviral drugs against DENV. These in silico findings provide a strong foundation for future experimental validations and in-vitro studies aimed at fighting DENV.
December 2024
·
6 Reads
December 2024
·
76 Reads
Ethnopharmacological relevance In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. Ammodaucus leucotrichus plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children. Aim of the study The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of A. leucotrichus essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde. Materials and methods The in vitro evaluation of ALEO’s relaxant and spasmolytic effects was carried out on isolated rats and rabbit jejunum in an organ bath setup. Intestinal contractility was recorded using an isotonic transducer connected to an amplifier. GC/MS analysis was conducted to identify components within ALEO. Subsequently, these compounds underwent in silico absorption, toxicity, and molecular docking studies. Results GC/MS analysis of this essential oil studied revealed seven compounds, which account for 98.67% of the oil, with the dominance of two compounds, namely, perillaldehyde (91.12%) and limonene (6.33%). ALEO and its main compound, perillaldehyde, reversibly relaxed the basal tone of rabbit jejunum, with the IC50 values 158.68 ± 13.89 and 95.03 ± 0.93 μg/mL, respectively. Moreover, ALEO caused a dose-dependent spasmolytic effect on Carbachol (CCh) and KCl provoked jejunum contraction in rats. Furthermore, the decrease in contractions of pre-contracted jejunum by CCh was more pronounced for perillaldehyde compared to ALEO, with an IC50 value of 68.59 ± 6.57 μg/mL, which was half compared to that of ALEO. The pre-treatment of the tissue with concentrations ranging from 30 to 100 μg/mL caused a rightward and downward shift in the concentration–response curves for CaCl2 and CCh. These results suggest that the spasmolytic effect of ALEO is mediated possibly through a non-competitive antagonist of calcium channel or muscarinic receptors. Our results are confirmed by the fact that perillaldehyde exhibited the highest docking scores on muscarinic acetylcholine receptors (M2 and M3) and voltage-gated calcium channels, with D-limonene showing lower binding energies in comparison. These remarks confirm that the activity of ALEO is attributed to the presence of perillaldehyde. In addition, perillaldehyde exhibits a low degree of in silico acute toxicity and high percent of intestinal absorption. Conclusion In summary, ALEO exhibits myorelaxant and antispasmodic effects by inhibiting muscarinic receptors and calcium channels, which can be attributed to the presence of perillaldehyde. This provides a scientific foundation for the traditional use of A. leucotrichus in treating gastrointestinal disorders and opens up possibilities for developing a more effective and less toxic drug-utilizing perillaldehyde.
December 2024
·
103 Reads
Covalent organic frameworks are a novel class of porous polymers, notable for their crystalline structure, intricate frameworks, defined pore sizes, and capacity for structural design, synthetic control, and functional customization. This paper provides a comprehensive analysis of graph entropies and hybrid topological descriptors, derived from geometric, harmonic, and Zagreb indices. These descriptors are applied to study two variations of Marta covalent organic frameworks based on contorted hexabenzocoronenes. We also conduct a comparative analysis using scaled entropies, offering refined tools for assessing the intrinsic topologies of these networks. Additionally, these hybrid descriptors are used to develop statistical models for predicting graph energy in higher-dimensional Marta-COFs.
December 2024
·
2 Reads
Introduction Two-dimensional (2D) MXene, recognized for its outstanding physical and chemical properties,has gained attention as a promising material in the biomedical field. However, its potential in tissue engineering applications remains underexplored. This study focuses on synthesizing SF-MXene composite electrospun fibers and evaluating their suitability for biomedical applications. Methods SF-MXene composite electrospun fibers were prepared through electrospinning. The fibers were characterized using field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), mechanical testing, thermogravimetric analysis (TGA), and contact angle measurements.Protein adsorption capacity and biomineralization potential were assessed. Biocompatibility was evaluated using fibroblasts (L929) and preosteoblasts (MC3T3-E1), with alkaline phosphatase (ALP) activity measured in MC3T3-E1 cells to determine osteogenic potential. Results The SF-MXene composite fibers exhibited well-defined morphological and structural properties, as confirmed by FE-SEM, FTIR, XRD, and TGA analyses. Mechanical testing revealed enhanced mechanical stability. The fibers showed high protein adsorption and potential biomineralization activity. Both L929 and MC3T3-E1 cells displayed high viability on the composite fibers, with significantly increased ALP activity in MC3T3-E1 cells, indicating osteogenic potential. Discussion The findings demonstrate that SF-MXene composite fibers possess excellent structural, mechanical, and biological properties suitable for tissue engineering. The fibers’ ability to support cell viability, protein adsorption, and osteogenic activity highlights their potential in biomedical applications, particularly in bone tissue regeneration. These results suggest that MXene-based composites could be developed further for broader biomedical uses.
December 2024
·
11 Reads
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy. Their performancewas tested in wastewater and oil-water emulsion filtrations and antimicrobial activity. PESmembranes incorporating SWCNTs were prepared using phase inversion and analysed via SEM,optical microscopy, and contact angle. Membrane properties and water permeability were assessed,and bacterial challenge tests evaluated antimicrobial activity. Cyrene enabled the dispersion ofSWCNTs at higher concentrations (0.038 mg mL⁻¹) compared to NMP (0.013 mg mL⁻¹). Transmission Electron Microscopy (TEM) analysis revealed that Cyrene effectively debundles SWCNTs, yielding better dispersion. Buckypapers fabricated with Cyrene demonstrated dense, uniform networks with enhanced surface smoothness and promising filtration performance for wastewater treatment and oil-water separation. PES membranes made with Cyrene exhibited well-organised finger-like structures, interconnected pores, superior porosity, and higher water permeability than NMP-based membranes. Incorporating SWCNTs further improved membrane performance. However, bacterial challenge tests indicated no significant antimicrobial activity. The findings highlight Cyrene’s potential as a sustainable alternative to traditional solvents, offering improved material properties and filtration performance. Despite these advantages, further studies are necessary to address solvent residuals and long-term safety considerations, ensuring its suitability for broader applications.
December 2024
·
21 Reads
Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections. In theoretical chemistry, a chemical molecule is converted into an isomorphic molecular graph, G ( V , E ) by considering atom set V as vertices and bond set E as edges. A topological index is a molecular descriptor derived from the molecular graph of a chemical compound that characterizes its topology. The relationship between a compound’s chemical structure and its properties is investigated through the quantitative structure-property relationship (QSPR). This article introduces new reverse sum Revan degree based indices to explore the physicochemical and pharmacokinetic properties of anti-filovirus drugs via multilinear regression. The findings reveal a strong correlation between these proposed indices and the properties of anti-filovirus drugs when compared to reverse and Revan degree-based indices. Thus, reverse sum Revan indices offer valuable insights for analyzing the drugs properties used to treat Ebola and Marburg virus infections. Moreover, the multilinear regression (MLR) results through reverse sum Revan indices are compared with Artificial Neural Network (ANN) modelling technique and it provides the better prediction of the physicochemical and pharmacokinetic properties of anti-filovirus drugs.
December 2024
·
2 Reads
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying. The surface morphological features and elemental distribution analysis of treated paper indicated that bio-materials were successfully assembled, which resulted in a uniform flame retardant coating on the paper fiber surface. Compared to the untreated paper, the limiting oxygen index of 20 bilayers (BL) treated paper increased substantially from 19.07% to 24.00%, and the thermogravimetric analysis showed out the residual char yield enhanced from 23.80% to 38.10% under nitrogen atmosphere. The cone calorimeter test results of 20 BL treated paper have approximately a 50.00% reduction than the untreated paper in both peak and total heat release rates. During thermal exposure, the top and bottom parts of the bilayered structure coating are successively flame retarded prior to paper fiber degrading. The method presented in this paper provides an environmentally sustainable approach for producing flame retardant wood-based paper.
December 2024
·
48 Reads
Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e., flexibility, processability and chemical versatility etc., and the superiority of POFs, like the structural integrity, tunable porosity and the high surface area, creating a type of hybrid materials. These resulting polymer-POF hybrid materials exhibit enhanced mechanical strength, chemical stability and functional diversity, thus opening up new opportunities for applications across a large variety of fields, such as gas separation, catalysis, biomedical applications, environmental remediation and energy storage. In this review, an overview of synthetic routes and strategies on how to covalently integrate different polymers with various POFs is discussed, especially with a particular focus on methods like polymerization within, on and among POF structures. To investigate the unique properties and functions of these resultant hybrid materials, the characterization techniques, including nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), gas adsorption analysis (BET) and computational modeling and machine learning, are also presented. The ability of polymer-POFs to manipulate the pore environments at the molecular level affords these materials a wide range of applications, providing a versatile platform for future advancements in material science. Looking forward, to fully realize the potential of these hybrid materials, the authors highlight the scalability, green synthesis methods, and potential for stimuli-responsive polymer-POF materials as critical areas for future research.
December 2024
·
2 Reads
Introduction Compression of the nerve root by a lumbar disc herniation can cause radiating pain in the lower limbs, and the nerve root decompression treatment may leave some patients with motor dysfunction and reduced sensory function. Studies have shown that nerve growth factor (NGF) can promote nerve growth and repair, but high doses, long duration, and immune response have become bottlenecks of its clinical application. Methods To overcome this obstacle, we developed Prussian blue (PBs) nanoparticles with the bio-delivery function and antioxidant effects of nanoenzymes. NGF was conjugated to the surface of PBs nanoparticles (PBs-NGF), which can be directly delivered to nerve cells. Results The results showed that free PBs showed great advantages in scavenging oxygen free radicals and antioxidants, while PBs-NGF showed good biocompatibility. At the cellular level, cell proliferation assay and fluorescence microscopy analysis confirmed that PBs-NGF significantly promoted the proliferation, differentiation, and neurite outgrowth of neuron-like PC12 cells compared with free NGF. In a nerve root compression (NRC) rat model, behavioral observations (paw withdrawal threshold, PWT, and paw withdrawal latency, PWL) confirmed that PBs-NGF eased the pain caused by nerve root compression. H&E staining showed that PBs-NGF could significantly reduce the inflammatory infiltration of nerve roots, and ELISA results showed that the concentrations of inflammatory markers (IL-6, IL-1β, and TNF-α) were also significantly reduced. Conclusion In summary, the developed functional nanoplatform provides a basis for the clinical application of NGF in lumbar nerve root injury with disc herniation compression and a new treatment strategy for patients.
December 2024
·
8 Reads
Quenching peroxynitrite (a reactive oxidant species) is a vital process in biological systems and environmental chemistry as it maintains redox balance and mitigates damaging effects in living cells and the environment. In this study, we report a systematic analysis of the mechanism of transforming peroxynitrite into nitrate using diaryl selenide in water. Through quantum mechanical calculations, we investigate the dynamic isomerization of peroxynitrite in a homogeneous catalytic environment. The mapped potential energy surfaces (PESs) generated using various methods in conjunction with different basis sets suggest that the isomerization mechanism includes four major steps: the reaction of peroxynitrite with diaryl selenide via oxygen-bound selenium; selenium oxidation in the presence of an appropriate oxidant; oxygen transfer; and ultimately, the generation of nitrate. The molecular orbital analysis suggests a substituent effect on the aromatic ring of diaryl selenide in this reaction. Changes in both molecular orbitals and electrostatic potential highlight the significance of the electron transfer step in ensuring the progression of this reaction.
December 2024
·
42 Reads
Lotus seeds, also known as Nelumbinis semen, has been utilized for over 7,000 years as vegetable, functional food and medicine. In this study, we primarily investigated the anticancer effects of lotus seed extracts, particularly of the methanolic extract (MELS) on cell proliferation inhibition, apoptosis induction and cell cycle arrest in ovarian cancer cell lines. Further, we studied the phytochemical composition of the MELS by gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, molecular docking was performed in order to substantiate the in vitro anticancer effect by in silico inhibitory study of human survivin protein. Our in vitro study demonstrated significant inhibition of SKOV3 (IC50: 79.73 ± 0.91), A2780 (IC50: 100.18 ± 2.42), SKOV3-CisR (IC50: 115.87 ± 2.2) and A2780-CisR (IC50: 138.86 ± 2.46) cells by MELS, compared to acetone, petroleum ether, n-hexane extracts, and the standard drug, cisplatin. Furthermore, MELS resulted in a substantial increase in apoptosis cell count to 78% in A2780-CisR cells and 82% in SKOV3-CisR cells, whereas a significant reduction in the G1 and G2/M phases of cells treated with MELS when compared to the control group. To identify the potential phytocompounds present in the MELS, we conducted GC-MS analysis, which led to the identification of 14 compounds. Molecular docking analysis revealed that oleic acid, stigmast-5-en-3-ol, phytol and glyceryl linolenate exhibited remarkable binding affinities of −6.1, −5.9, −5.8 and −5.6 kcal/mol, respectively against survivin. Our findings suggest that certain phytochemicals presented above found in MELS may have therapeutic potential for management of ovarian cancer.
December 2024
·
45 Reads
2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles. This review summarizes the transition-metal-free, efficient, and novel synthetic pathways toward constructing the dihydrobenzofuran nucleus established after 2020.
December 2024
·
8 Reads
Although the Diels–Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS-co-FMA)] as the reaction environment. First, furan composition in poly (SS-co-FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition. The successful formation of LbL films with 8 and 40 layers was confirmed by quartz crystal microbalance. The polarity within films and, consequently, the DA efficiency between furfuryl methacrylate and the maleimide in MAL-PEG2-NHS increased with an increasing number of layers up to 40 layers without requiring chemical modification on the reaction site of DA or any catalysts. Furthermore, we employed the LbL coating on the surface of magnetic nanoparticles (MNPs). The retro DA reaction (rDA) was successfully triggered by heating the MNPs by AC magnetic field. We believe that the proposed technology can serve as an enhanced DA reaction environment as well as temporal/spatial control of rDA in various applications.
December 2024
·
9 Reads
High-level quantum chemical calculations are performed for the (NH3)MO²⁺ and (NH3)5MO²⁺ species (M = Ti-Cu), extending our previous work on the bare MO²⁺ ions. The potential energy curves along the M-O distance are constructed for the ground and multiple excited electronic states of (NH3)MO²⁺ and are compared to those of MO²⁺. We see that ammonia stabilizes the oxo states (M⁴⁺O²⁻) over the oxyl (M³⁺O⋅−) ones. This trend is intensified in the (NH3)5MO²⁺ species. We then examined the reaction of the latter species with both methane and methanol. We find that the oxyl states activate a C-H bond easily with barriers smaller than 10 kcal/mol across all first-row transition metals, while the barriers for the oxo states start from about 50 kcal/mol for M = Ti and decrease linearly to 10 kcal/mol going toward M = Ni. This is attributed to the increasing spin density on the oxygen atom observed for the oxo states. The most important finding is that the formation of hydrogen bonds between the OH group of methanol and the N-H bonds of the ammonia ligands increases the activation barriers for methanol considerably, making them comparable to and slightly higher than those of methane. This finding suggests a new strategy to slow the oxidation of methanol, leading to the long-desired higher methane-to-methanol selectivity.
December 2024
·
5 Reads
Background Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) influenced by multiple factors. Berberine, an isoquinoline alkaloid derived from the root and bark of Coptis chinensis Franch., has shown promise in managing UC, but its underlying mechanisms remain unclear. Methods To elucidate the relationship between berberine, ulcerative colitis (UC), and the organism’s metabolome, we established a dextran sulfate sodium (DSS)-induced UC model in rats. Colonic tissue was collected for histopathological examination, while plasma samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with dynamic Multiple Reaction Monitoring (dMRM). This approach, characterized by its short analysis time of 20 min per sample, excellent reproducibility, and straightforward data processing, allowed for the comprehensive detection of a wide array of metabolites, including amino acids, lipids, and organic acids, many of which are implicated in the pathophysiology of UC. Results Our results showed that berberine modulated the metabolic disturbances of 33 compounds in the plasma of UC rats, primarily including amino acids, pyrimidines, organic phosphoric acids, fatty acyls, and organonitrogen compounds. These altered metabolites were associated with various pathways, such as amino acid metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, taurine and hypotaurine metabolism, pyrimidine metabolism, glyoxylate and dicarboxylate metabolism, and the citrate cycle (TCA cycle). Notably, 3-hydroxyproline, homocysteic acid, L-threonine, L-lysine, carbamoyl phosphate, O-phosphoethanolamine, taurine, leucine, and phosphorylcholine exhibited significant differences between the Treatment and Model groups, with levels reverting to those of the Control group (p < 0.001). These findings suggested that these compounds may serve as potential plasma biomarkers for UC. Conclusion This study provided valuable insights into the mechanism by which berberine exerted its therapeutic effects on UC through metabolomics. Our results highlighted berberine’s potential to modulate key metabolic pathways and restore the levels of several metabolites, suggesting its utility as a therapeutic agent for UC. These findings underscored the importance of metabolomics in understanding the pathophysiology and treatment of UC.
December 2024
·
160 Reads
Introduction This study investigates the synthesis of silver nanoparticles (Ag NPs) using Helianthemum lippii extract and evaluates their photoprotective, anti-hemolytic, antibacterial, and anti-inflammatory properties compared to various extract fractions, including total aqueous extract (AE), flavonoid monoglycosides (FMG), flavonoid diglycosides/triglycosides (FDG/FTG), tannins (TN), and anthocyanins (AC). Helianthemum lippii is rich in bioactive compounds such as caffeic acid, p-coumaric acid, and gallic acid, known for their therapeutic potential. This study aims to determine whether embedding these phytochemicals into Ag NPs enhances their biomedical applications compared to the natural extract fractions. Methods Ag NPs were synthesized using Helianthemum lippii extract through a green synthesis approach, and their physicochemical properties, including size and morphology, were characterized. High-performance liquid chromatography (HPLC) was used to identify key phytochemicals in the various extract fractions. Biological assays were conducted to assess photoprotective efficacy (sun protection factor, SPF), antibacterial activity (minimum inhibitory concentration, MIC), anti-inflammatory potential (percentage inhibition), and hemolytic properties, with sodium dodecyl sulfate (SDS) serving as a control. Results HPLC analysis confirmed the presence of bioactive compounds, including caffeic acid, p-coumaric acid, and gallic acid, in the AE extract. The Ag NPs were spherical with an average diameter of 35 nm and had phytochemicals adsorbed on their surface. The AC fraction demonstrated the highest SPF (28.27), followed by TN (27.99), AE (23.20), and Ag NPs (22.50), while FMG exhibited a moderate SPF (19.39) compared to the commercial sunscreen Avene® (40.00). Ag NPs exhibited superior antibacterial activity with MIC values of 0.2 mg/mL against Pseudomonas aeruginosa and 0.4 mg/mL against Bacillus subtilis, outperforming AE, which had a MIC of 2.81 mg/mL. Anti-inflammatory assays showed that Ag NPs achieved 79.8% inhibition at 400 μg/mL, surpassing AE (71.75%) and TN (67.9%), and were comparable to diclofenac (72.63%). Hemolysis assays revealed that Ag NPs induced only 1.35% hemolysis, lower than AE (1.91%) and significantly below SDS (90.48%). Discussion The findings demonstrate that Helianthemum lippii-derived Ag NPs exhibit enhanced antibacterial, anti-inflammatory, and anti-hemolytic properties compared to the extract fractions. While the SPF of Ag NPs was slightly lower than the AC and TN fractions, their superior multifunctional bioactivities underscore their potential for various biomedical applications. The integration of phytochemicals into Ag NPs significantly enhances their therapeutic efficacy, making them promising candidates for advanced pharmaceutical formulations and topical protective agents.
December 2024
·
20 Reads
When processing lucuma (Pouteria lucuma), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40–60°C), pressure (100–300 bar), and CO2 flow rate (3–7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R² values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I2/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO2 extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
Journal Impact Factor™
CiteScore™