Fish and Fisheries

Published by Wiley
Online ISSN: 1467-2979
Publications
Article
There is increasing evidence that fish gain energetic benefits when they swim in a school. The most recent indications of such benefits are a lower tail (or fin) beat at the back of a school and reduced oxygen consumption in schooling fish versus solitary ones. How such advantages may arise is poorly understood. Current hydrodynamic theories concern either fish swimming side by side or in a diamond configuration and they largely ignore effects of viscosity and interactions among wakes and individuals. In reality, however, hydrodynamic effects are complex and fish swim in many configurations. Since these hydrodynamic effects are difficult to study empirically, we investigate them in a computer model by incorporating viscosity and interactions among wakes and with individuals. We compare swimming efficiency of mullets of 12.6 cm travelling solitarily and in schools of four different configurations at several inter-individual distances. The resulting Reynolds number (based on fish length) is approximately 1150. We show that these fish always swim more efficiently in a school than alone (except in a dense phalanx). We indicate how this efficiency may emerge from several kinds of interactions among wakes and individuals. Since individuals in our simulations are not even intending to exploit the wake, gains in efficiency are obtained more easily than previously thought.
 
Article
Since 2000, virtually every major assessment of ocean policy has called for implementing an ecosystem approach to managing marine resources, yet crafting such an approach has proved difficult. Ecosystems today exhibit little of the abundance and complexity found in the past, and populations of over-fished species have declined dramatically world-wide, yet historical evidence has been difficult to assimilate into complex ecosystem models. Here, we look to the testimony of Gulf of Maine fishermen for insights on the abundance of Atlantic cod (Gadus morhua) and the environment that once supported such large numbers of them. Using logbook data from Frenchman’s Bay, Maine, and other New England communities at the time of the Civil War, we estimate cod landings in the Gulf of Maine in 1861, establish a population structure for cod at that time, and map the geographical distribution of fishing effort of a fleet that minimized risk and cut expenses by fishing inshore where cod and bait species were plentiful. Log entries list the pelagic and bottom-dwelling invertebrate species these fishermen used for bait, when and how they acquired it, and what species they looked for in the water to signify the presence of cod. Ranked descriptions of both cod and bait abundance were found to be statistically significant indicators of cod catch. Frenchman’s Bay fishermen 140 years ago provided a minimum set of ecosystem requirements for abundant cod, conditions that may inform management plans aimed at restoring both the species and the Gulf of Maine marine ecosystem.
 
Article
This paper aims to describe the state of crayfish farming technology in the USA, Australia and Europe, and to discuss some of the prerequisites for this industry. Data from Europe are partly based on replies from a questionnaire sent out to scientists in all European countries. For other parts of the world, the crayfish literature has been reviewed and data from the August 2000 meeting of the International Association of Astacology are also included. Issues addressed in this review are cultivated species, production and productivity figures, production technique with regard to enclosures, reproduction and feed items, disease problems, predators, pond vegetation and water quality.
 
Article
Man has been domesticating plants and animals for 10 000 years. Domestication increased so that 2000 years ago, following the 'Neolithic' or 'food-producing' revolution, the overwhelming majority of people were making a living by farming. Nowadays hunting, an uncertain way of collecting food, has shifted from a survival activity to a secondary (and most often recreational) activity. Within less than a century, marine fisheries, which constitute the last major world industry exploiting wild animal resources, have reached many ecological and economic limits and they face many uncertainties. In the context of generalised overexploitation, fishing could rapidly follow the same history as hunting and become a marginal activity for the collection of luxury items. This is not only a major concern for the future of an important food source, it also seriously questions our ability to preserve our last and unique relationship with renewable wild animal resources. If we do not want fisheries to be the counterpart of hunting, fisheries and fisheries research need to be 'modernised' in a way amenable to integrating new objectives, paradigms and ethical concerns. As scientists, we must direct our efforts toward reconciling long-term environmental objectives and short-term constraints by defining new indicators and reference points for management. Will we be able to initiate a 'human and wild food reconciliation' revolution?
 
Article
Maintaining or restoring fish stocks at levels that are capable of producing maximum sustainable yield is a legal obligation under the United Nations Convention on the Law of the Sea (UNCLOS) and has been given the deadline of no later than 2015 in the Johannesburg Plan of Implementation of 2002. Here, we analyse stock assessment data of all major fish stocks of the Northeast Atlantic to determine whether Europe will be able to deliver on this commitment, which it has helped to bring about. The analysis shows that, if current fishing pressure continues, 91% of the European stocks will remain below target. If European ministers in charge of fisheries were serious about meeting their obligations, they would have to reduce drastically fishing pressure and halt fishing completely on some stocks. But even if fishing were halted in 2010, 22% of the stocks are so depleted that they cannot be rebuilt by 2015. If current trends continue, Europe will miss the 2015 deadline by more than 30 years. We argue that, from a legal perspective, such repeated enactment of fisheries management measures, which are incapable of maintaining or restoring Bmsy, does not comply with the requirements contained in UNCLOS and may constitute a breach of the precautionary principle of European Community law.
 
Article
A long-term (1907–98) virtual population analysis (VPA) was made for Norwegian spring-spawning herring (NSSH), which is a huge pelagic fish stock in the north-east Atlantic. It shows that this herring stock has had large fluctuations during the last century; these fluctuations have mainly been determined by variations in the temperature of the inflowing water masses to the region. The spawning stock biomass (SSB) increased from a rather low level in the early years of this century and reached a high level of around 14 million tons by 1930. The spawning stock biomass then decreased to a level of around 10 million tons by 1940, but increased again to a record high level of 16 million tons by 1945. The stock then started to decrease and during the next 20-year period fell to a level of less than 50 000 tons by the late 1960s. Through the 1970s and 1980s, the stock slowly recovered and after the recruitment of strong year classes in 1983 and 1990–1992 the stock recovered to a spawning stock biomass of about 10 million tons. The long-term fluctuation in spawning stock biomass is caused by variations in the survival of recruits. It is found that the long-term changes in spawning stock abundance are highly correlated with the long-term variations in the mean annual temperature of the inflowing Atlantic water masses (through the Kola section) into the north-east Atlantic region. The recruitment is positively correlated with the average temperature in the Kola section in the winter months, January–April, which indicates that environmental factors govern the large-scale fluctuations in production for this herring stock.
 
Article
The interaction between environmental forces and dispersal characteristics is largely responsible for the patterns of population structure in marine fish. Yet, crucial gaps in knowledge on life-histories and the relative contributions of numerous environmental factors still hinder a thorough understanding of marine population connectivity. One life-history trait so far overlooked by most fish population geneticists is sequential hermaphroditism, whereby individuals first mature as one sex and later in life reverse into the other sex. Population genetic theory predicts that sex-changing fish will present a higher potential for more spatially structured populations than gonochoristic species, as a result of their naturally skewed sex ratio, which is expected to reduce effective population size and hence increase genetic drift. We gathered published data on genetic population structure in marine fish, as summarized by the popular FST index, and – after controlling for several potentially confounding factors – we tested the hypothesis that sex-changing species are more genetically structured than gonochoristic ones. Although we found no evidence to support the theoretical expectations, our results suggest new working hypotheses that can stimulate new research avenues at the intersection between physiology, genetics and fisheries science.
 
Article
The dramatic declines in abalone Haliotis spp. fishery production have been documented all over the world. Release of hatchery-reared juveniles into natural habitats has been considered as one measure to sustain and/or augment the current fishery production of abalone, as well as to restore collapsed abalone stocks. However, attempts at abalone release programmes have only been undertaken at experimental scales, except for Japan, where large-scale stock enhancement programmes for abalone have been undertaken since late 1960s. To evaluate the potential of stock enhancement for abalone, we analysed the release surveys of 13 case studies in Japan in terms of the overall recapture rate (number of recaptures through a lifetime/number of juveniles released), yield per release (YPR, yields from released individuals), the economic efficiency of releases (ratio of income from recaptured abalone to release cost) for each release year, and the contribution of hatchery releases to total catches for each fishing year. The average estimates for overall recapture rates (0.014–0.238) and YPR (3.1–60.3 g/individual) varied between locations and release years. The economic efficiency was estimated at 0.4–6.2. The released abalone contributed 6.9–83.5% to total catches. Hatchery releases could augment total production at some locations, but the success of release programmes would be limited by the carrying capacity at release areas, because density-dependent mortality occurred following releases in some cases. Throughout Japan, the annual catch of abalone has continuously declined from ∼6500 t in 1970 to ∼2000 t in the mid-1990s, despite the increase in the number of hatchery releases. Based on the estimates for YPR, the magnitude of the abalone releases on a national scale has not been sufficiently large to sustain the total production of Japanese abalone, which has primarily fluctuated according to the abundances of wild populations. Our results suggest that releases should be targeted at local populations in regions where stock enhancement is predicted to have the greatest chance of success, and the magnitude of releases should be considered carefully and determined for each region by taking the local carrying capacity into account. We also address the future prospects of abalone stock enhancement.
 
Industry led research on an underwater setting chute (left panel) and side setting (right panel) in the Hawaii pelagic longline fisheries.
Article
Mortality in longline fisheries is a critical global threat to most albatross and large petrel species. Here we identify key principles and approaches to identify and achieve broad use of effective seabird by-catch avoidance methods. Despite the availability of highly effective and cost-saving seabird avoidance methods, few longline fleets employ them. Given the political context and capacity of management authorities of the majority of longline fisheries, it is critical to identify seabird avoidance strategies that are not only highly effective, but are also economically viable and commercially practical. Adoption of an international performance standard for longline baited hook–sink rate, and prescribing minimum gear weighting designs that meet this standard that are achievable by all longline fisheries, would be an important step forward towards resolving low use of seabird avoidance methods by vessels, including those in illegal, unregulated and unreported fisheries. Due to differences between fleets, no single seabird avoidance measure is likely to be effective and practical in all longline fisheries. Therefore, testing of seabird avoidance methods in individual fleets is needed to determine efficacy and economic viability. Longline fishers should directly participate in these trials as they have a large repository of knowledge and skills to effectively develop and improve seabird by-catch avoidance techniques, and this provides industry with a sense of ownership for uptake of effective by-catch reduction methods. Establishing protected areas containing seabird colonies and adjacent waters within a nation's EEZ can be an expedient method to address seabird by-catch. However, establishing high seas marine protected areas to restrict longline fishing in seabird foraging areas, which would require extensive and dynamic boundaries and large buffer zones, may not be a viable short-term solution because of the extensive time anticipated to resolve legal complications with international treaties, to achieve international consensus and political will, and to acquire requisite extensive resources for surveillance and enforcement. Analysis of results of research on seabird avoidance methods reveals that the most reliable comparisons of the efficacy of alternative strategies are from comparing the effectiveness of methods tested in a single experiment. Benefits from standardizing the reporting of seabird by-catch rates to account for seabird abundance are described. To provide the most precise inputs for seabird population models, estimates of seabird mortality in longline fisheries should account for seabird falloff from hooks before hauling, delayed mortality of seabirds caught but freed from gear, and mortality caused by hooks discarded in offal.
 
Article
Genetic and environmental factors may interact to control sex determination in fishes. A common pattern of initial female differentiation and subsequent male transformation before maturation in non-hermaphroditic fishes and after maturation in sequentially hermaphroditic fishes has suggested that changes in developmental timing may be responsible for the evolution of various expressions of sexual lability. Sequential hermaphroditism is rare in freshwater fishes, but investigators report degrees of sexual lability at four distinct life stages in cichlid fishes. Some cichlids undergo genetic sex determination and are not labile. Lability at the larval stage allows temperature or pH to determine sex. Social interactions apparently determine sex at the juvenile stage in the Midas cichlid (Amphilophus citrinellus). Most reports of post-maturational sex change in cichlids are anecdotal or unsubstantiated. The common occurrence of same-sex spawning suggests that many species are incapable of sex change. Sequential hermaphroditism is concluded not to be typical, except for the checkerboard cichlid (Crenicara punctulata), which regularly undergoes functional female-to-male transformation. Expression of sexual lability at four life stages in one family of fishes corroborates a role for developmental timing in the evolution of sequential hermaphroditism as well as environmentally controlled sex determination. The broad phylogenetic distribution of sexual lability in cichlids indicates that processes capable of producing sex change are generally present. The rarity of sequential hermaphroditism in cichlids and possibly other freshwater fishes is likely due to unpredictability of food and therefore potential mate distributions compared with coral reef habitats.
 
Article
Originally developed to assess the relative abundance of ≥1+ fishes in large rivers, point abundance sampling by electrofishing (PASE) was adapted for 0+ fishes in the mid-1980s. Being both economical and widely applicable, PASE for 0+ fish has become a commonly used sampling approach in Europe, but its use for estimating 0+ fish density and species richness has attracted particular concern because of size and species selectivity. As such, this review is both timely and necessary. It summarizes the development of PASE and evaluates its various applications: studies of 0+ fish community composition, relative abundance and density, species richness (S), population size structure, larval and juvenile growth dynamics, microhabitat use, diel dynamics of species–species and species–microhabitat interactions, and the analysis of data emanating from PASE databases. The use and potential misuse of replicate sampling in estimates of S are examined, with PASE data from various European rivers re-analysed to assess geographical patterns in 0+ fish S. Comparisons of PASE and other approaches for estimating 0+ fish density and species richness have all demonstrated PASE to be cost-effective and relatively reliable, but sampling accuracy and precision do decrease as fishes enter the juvenile period of development.
 
Article
Atmospheric carbon dioxide (CO2) emissions from human industrial activities are causing a progressive alteration of seawater chemistry, termed ocean acidification, which has decreased seawater pH and carbonate ion concentration markedly since the Industrial Revolution. Many marine organisms, like molluscs and corals, build hard shells and skeletons using carbonate ions, and they exhibit negative overall responses to ocean acidification. This adds to other chronic and acute environmental pressures and promotes shifts away from calcifier-rich communities. In this study, we examine the possible implications of ocean acidification on mollusc harvests worldwide by examining present production, consumption and export and by relating those data to present and future surface ocean chemistry forecast by a coupled climate-ocean model (Community Climate System 3.1; CCSM3). We identify the ‘transition decade’ when future ocean chemistry will distinctly differ from that of today (2010), and when mollusc harvest levels similar to those of the present cannot be guaranteed if present ocean chemistry is a significant determinant of today’s mollusc production. We assess nations’ vulnerability to ocean acidification-driven decreases in mollusc harvests by comparing nutritional and economic dependences on mollusc harvests, overall societal adaptability, and the amount of time until the transition decade. Projected transition decades for individual countries will occur 10–50 years after 2010. Countries with low adaptability, high nutritional or economic dependence on molluscs, rapidly approaching transition decades or rapidly growing populations will therefore be most vulnerable to ocean acidification-driven mollusc harvest decreases. These transition decades suggest how soon nations should implement strategies, such as increased aquaculture of resilient species, to help maintain current per capita mollusc harvests.
 
Article
Views expressed on the potential impact of ocean acidification range from wholesale degradation of marine ecosystems through to no discernable impact with minimal consequences. Constraining this range of predictions is necessary for the development of informed policy and management. The direct biological impacts of acidification occur at the molecular and cellular level; however, it is the expression of these effects at the population and ecosystem level that is of societal concern. Here, we consider the potential impact of ocean acidification on fisheries with particular emphasis on approaches to scaling from physiological responses to population- and ecosystem-level processes. In some instances, impacts of ocean acidification may lead to changes in the relative species composition at a given trophic level without affecting the overall productivity, whilst in other instances, ocean acidification may lead to a reduction in productivity at a given tropic level. Because of the scale at which ecological processes operate, modelling studies are required. Here, ocean acidification is situated within ongoing research into the ecological dynamics of perturbed systems, for which many models have already been developed. Whilst few existing models currently explicitly represent physiological processes sensitive to ocean acidification, some examples of how ocean acidification effects may be emulated within existing models are discussed. Answering the question of how acidification may impact fisheries requires the integration of knowledge across disciplines; this contribution aims to facilitate the inclusion of higher trophic level ecology into this ongoing debate and discussion.
 
Article
Fishing affects the seabed habitat worldwide on the continental shelf. These impacts are patchily distributed according to the spatial and temporal variation in fishing effort that results from fishers' behaviour. As a consequence, the frequency and intensity of fishing disturbance varies among different habitat types. Different fishing methodologies vary in the degree to which they affect the seabed. Structurally complex habitats (e.g. seagrass meadows, biogenic reefs) and those that are relatively undisturbed by natural perturbations (e.g. deep-water mud substrata) are more adversely affected by fishing than unconsolidated sediment habitats that occur in shallow coastal waters. These habitats also have the longest recovery trajectories in terms of the recolonization of the habitat by the associated fauna. Comparative studies of areas of the seabed that have experienced different levels of fishing activity demonstrate that chronic fishing disturbance leads to the removal of high-biomass species that are composed mostly of emergent seabed organisms. Contrary to the belief of fishers that fishing enhances seabed production and generates food for target fish species, productivity is actually lowered as fishing intensity increases and high-biomass species are removed from the benthic habitat. These organisms also increase the topographic complexity of the seabed which has been shown to provide shelter for juvenile fishes, reducing their vulnerability to predation. Conversely, scavengers and small-bodied organisms, such as polychaete worms, dominate heavily fished areas. Major changes in habitat can lead to changes in the composition of the resident fish fauna. Fishing has indirect effects on habitat through the removal of predators that control bio-engineering organisms such as algal-grazing urchins. Fishing gear resuspend the upper layers of sedimentary seabed habitats and hence remobilize contaminants and fine particulate matter into the water column. The ecological significance of these fishing effects has not yet been determined but could have implications for eutrophication and biogeochemical cycling. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators. In contrast, high levels of trawling disturbance cause sediment systems to become unstable due to large carbon fluxes between oxic and anoxic carbon compartments. In low energy habitats, intensive trawling disturbance may destabilize benthic system chemical fluxes, which has the potential to propagate more widely through the marine ecosystem. Management regimes that aim to incorporate both fisheries and habitat conservation objectives can be achieved through the appropriate use of a number of approaches, including total and partial exclusion of towed bottom fishing gears, and seasonal and rotational closure techniques. However, the inappropriate use of closed areas may displace fishing activities into habitats that are more vulnerable to disturbance than those currently trawled by fishers. In many cases, the behaviour of fishers constrains the extent of the impact of their fishing activities. Management actions that force them to redistribute their effort may be more damaging in the longer term.
 
Article
Interactive governance theory proposes that fisheries can be compared according to their governability, or their overall capacity for governance. Central to governance capacity in fisheries is institutional adaptability, the ability of humans to modify their organizations and reflect on the rules and values that guide them in response to change. In this paper, I suggest a preliminary synthesis of interactive governance theory, resilience thinking and adaptive co-management in order to refine the understanding of institutional adaptation as a key component of fisheries governability. I use the case of patron–client relationships in the Junagadh fishery to show how governability analysis is a valuable perspective from which to understand institutional characteristics that have contradictory implications for adaptation in fisheries.
 
Article
One of the most challenging problems in evolutionary biology is linking the evolution of the phenotype with the underlying genotype, because most phenotypes are encoded by many genes that interact with each other and with the environment. Further, many phenotypes are correlated and selection on one can affect evolution of the other. This challenge is especially important in fishes, because their evolutionary response to harvest, global warming and conservation actions are among the least understood aspects of their management. Here, we discuss two major genetic approaches to studying the evolution of complex traits, multivariate quantitative genetics and molecular genetics, and examine the increasing interaction between the two fields. These interactions include using pedigree-based methods to study the evolution of multivariate traits in natural populations, comparing neutral and quantitative measures of population structure, and examining the contribution that the two approaches have made to each other. We then explore the major role that quantitative genetics is playing in two key issues in the conservation and management of fish populations: the evolutionary effects of fishing and adaptation to climate change. Throughout, we emphasize that it is important to anticipate the availability of improvements in molecular technology and statistical analyses by creating research populations such as inbred lines and families segregating at fitness traits, developing approaches to measuring the full range of phenotypes related to fitness, and collecting biological material and ecological data in natural populations. These steps will facilitate studies of the evolution of complex traits over informative temporal and spatial scales.
 
Terrestrial locomotion of the mudskipper Periophthalmus koelreuteri showing the complete cycle of pelvic and pectoral fin movements. Each drawing represents a time lapse of 0.03 s (redrawn from Harris 1960).
Ammonia and urea excretion rates in amphibious fish pre-emersion, during and post-emersion.
Continued.
Article
There are a small number of fish species, both marine and freshwater, that exhibit a truly amphibious habit that includes periods of aerial exposure. The duration of emersion is reflected in the level of physical and physiological adaptation to an amphibious lifestyle. Fish that are only briefly out of water retain predominantly aquatic attributes whereas there are semi-terrestrial species that are highly adapted to prolonged periods in the aerial habitat. Desiccation is the main stressor for amphibious fish and it cannot be prevented by physiological means. Instead, amphibious fish resist excessive water loss by means of cutaneous modification and behavioural response. The more terrestrially adapted fish species can tolerate considerable water loss and may employ evaporation to aid thermoregulation. The amphibious habit is limited to fish species that can respire aerially. Aerial respiration is usually achieved through modification to existing aquatic pathways. Freshwater air-breathers may respire via the skin or gills but some also have specialized branchial diverticula. Marine species utilize a range of adaptations that may include modified gills, specialized buccopharyngeal epithelia, the intestine and the skin. Areas of enhanced respiratory activity are typified by increased vascularization that permits enhanced perfusion during aerial exposure. As with other adaptations the mode of nitrogenous elimination is related to the typical durations of emersion experienced by the fish. Intertidal species exposed on a regular cycle, and which may retain some contact with water, tend to remain ammoniotelic while reducing excretion rates in order to prevent excessive water loss. Amphibious fish that inhabit environments where emersion is less predictable than the intertidal, can store nitrogen during the state of emersion with some conversion to ureotelism or have been shown to tolerate high ammonia levels in the blood. Finally, the more amphibious fish are more adapted to moving on land and seeing in air. Structural modifications to the pectoral, pelvic, dorsal and anal fins, combined with a well-developed musculature permit effective support and movement on land. For vision in air, there is a general trend for fish to possess close-set, moveable, protruberant eyes set high on the head with various physical adaptations to the structure of the eye to allow for accurate vision in both air and water.
 
Article
Several diadromous New Zealand and Australian species of Galaxias are now known, or suspected, to deposit their eggs amongst riparian vegetation or substrates either supratidally in estuaries or in forested streams in locations that are only temporarily submerged by elevated water levels. The eggs develop in a humid atmosphere and hatch when the egg deposition sites are resubmerged; a significant role for agitation in stimulating hatching seeming likely. There are risks from the eggs becoming dehydrated, and also from a failure by water to resubmerge the eggs before they have exhausted their energy resources. Hatching is triggered by elevated flows, perhaps being an outcome of agitation of the eggs. Elevated flows may also increase the rate of downstream transport of the larvae, facilitating survival during dispersal to sea from spawning sites in streams that may be long distances inland. Hatching during flood events may favour survival of the larvae because turbid flows may provide ‘cover’ for the larvae as they emigrate to sea. Risks from egg predation by aquatic predators may be replaced by risks from terrestrial predators.
 
Article
Mbuna, the dominant fishes on the rocky shores of Lake Malawi, have become a major ‘model system’ for the study of rapid speciation and adaptive radiation. At least 295 putative species are known, of which more than 200 remain undescribed. There is no good evidence for monophyly in the mbuna, rather mitochondrial DNA phylogenies indicate that they are polyphlyetic with respect to benthic feeding cichlids of the genera Aulonocara, Alticorpus and some species of Lethrinops. Male mbuna hold territories for 18 months or more and breed year-round. All species are maternal mouthbrooders, but females do not guard free-swimming young. Mbuna are polygamous (both sexes). There is sexual dimorphism in size, colour and fin length, and many species show within-population colour polymorphism. Mbuna genera are largely differentiated on the basis of head, jaw and tooth morphology, but congeneric species are generally distinguished by male colour. Many morphologically specialized forms have broad diets and often feed on common easily obtainable resources. While it is likely that dietary and habitat niche partitioning contributes to species coexistence, this has never clearly been demonstrated under experimental conditions. Populations on spatially separated habitat patches are often genetically differentiated, probably because most species are specialized for life on rocky shores, and lack a dispersal phase in their life histories. Males seem to disperse more than females, but are able to home several kilometres back to their territories. Some closely related ecologically equivalent allopatric populations are differentiated in male colour. Those tested have been shown to mate at least partially assortatively. Sexual selection acting on male colour seems the most plausible mechanism for initial species divergence. The same colour forms seem to have arisen several times, suggesting frequent parallel evolution. The main conservation threat to mbuna at present seems to be translocation of species within the lake as a result of the aquarium trade. However, deleterious effects on indigenous populations are not documented. In the long run, sedimentation, pollution, introduction of alien species and the development of targeted food fisheries could be more serious threats.
 
Article
Anadromy and homing are two traits found widely amongst teleost fishes. They co-occur in salmonid fishes, and probably also in other fish families. Anadromy provides fish with the opportunity for more rapid growth, larger size, and higher fecundity through the exploitation of rich food resources and favourable growing temperatures in the sea, but may result in higher predation mortalities and has the tendency to disperse stocks very widely. Homing fosters adaptation of stocks to favourable local spawning conditions, but the dispersive effects of anadromy, in the absence of homing, may tend to break down such local adaptation. A low percentage of straying in species that home may have long-term evolutionary advantages. This paper explores the question of whether homing may be a preadaptation for successful evolution of anadromy, or whether the two attributes have coevolved.
 
Article
More than 120 surveys over 25 years suggest that appropriate use of the daily egg production method (DEPM) provides unbiased but rather imprecise estimates of spawning biomass (coefficient of variation generally above 30%). Knowledge of species reproductive biology and early life history and a survey design adapted to local population dynamics are required to optimize DEPM performance in terms of bias, precision and cost. Clupeoid applications dominate worldwide (mainly for anchovies and sardines) and estimates are often used to tune indirect assessment models or to calibrate other fisheries-independent methods. The method seems better adapted to the life history of anchovies than of sardines, leading to more precise estimates of anchovy spawning biomass and facilitating extensions of the method to estimate total biomass and numbers at age. The continuous underway fish egg sampler is often used as a secondary sampler in the ichthyoplankton survey of the DEPM to reduce the cost and improve the precision of egg production. Multinomial models were recently developed to analyse egg incubation data and used in a Bayesian procedure for egg ageing and delimitation of daily cohorts. These were incorporated in model-based estimators to get spatially explicit estimates of egg production, daily fecundity parameters and spawning biomass that can improve the precision of DEPM. Uncertainty in daily fecundity estimation of clupeoids is mainly because of spawning fraction estimation by the post-ovulatory follicle (POF) method. Exploration of recent histological and molecular techniques for POF characterization and laboratory experiments to test the effect of temperature on POF degradation can help to improve spawning fraction estimation. Available estimates of egg production and mortality, daily fecundity, spawning area and biomass from different populations, species and ecosystems are being used to improve the understanding of clupeoid spawning dynamics, their relation with ecosystem productivity and to build comprehensive population models. Finally, a counter-intuitive finding of this review is that, although the DEPM is almost exclusively applied to clupeoids, recent evidence indicates that it may be easier and cheaper to use in other teleost families, including demersal species.
 
Increase in the number of base pairs that can be sequenced for US$1. Until recently, sequencing costs declined (and number of basepairs/US$ increased) exponentially (diamonds). The line shows a doubling of throughput/US$ every 2 years. Recent developments (squares) allowed a massive leap in efficiency (data from Shendure et al. 2004; Kurzweil 2005; Mardis 2008).
Growth of GenBank since its foundation. Note the logarithmic scale. The recent levelling off in growth is likely caused by the availability by alternative databases, such as the barcode of life database (Ratnasingham and Hebert 2007).
Article
Although genetic approaches to questions in fisheries management have been very useful in the past, they have encountered consistent hurdles despite the development of new marker systems. However, recent technological advances in molecular genetics will help to overcome many of these hurdles and are likely to revolutionize fish and fisheries biology. DNA-sequencing costs have been decreasing exponentially, and recent breakthroughs have led to rapid increase in throughput that allows sequencing the entire expressed genome of a non-model organism with standard project budgets. Increase in screening throughput and number of available markers, reduction in costs and improved insights into gene function and control of gene expression will allow applications that were impossible until recently. Here, we briefly recount the recent history of fisheries genetics, provide an outlook on near-term and long-term developments in genetic technology and consider their applications and implications for fisheries science and education.
 
Relationships between (a) biomass, (b) catch weight and (c) mean individual weight in the catch and fishing mortality F for ‘species’ defined by L∞ of 30, 50, 70, 90, 110 and 130 cm.
Relationships between (a) mean weight of fish in the community (sea) or catch, (b) mean maximum weight of fish in the community or catch, (c) mean trophic level of fish in the community or sea where trophic level is calculated by assigning fixed trophic levels to ‘species’ (fix) or variable (var) trophic levels to ‘species’ and (d) biomass of ‘species’ with L∞ of 110 and 130 cm as a proportion of unexploited biomass and fishing mortality F. The dotted vertical lines indicate values of F associated with (i) obtaining maximum sustainable yield from the largest ‘species’ with an L∞ of 130 cm, (ii) listing the largest ‘species’ as ‘critically endangered’ according to IUCN A1 criteria if the change in abundance occurred over the greater of 10 years or three generations (Baillie et al. 2004) and (iii) obtaining maximum sustainable yield from an assemblage consisting of all ‘species’ with L∞ of 30–130 cm.
Article
Scientists hold different views about environmental management. These views may drive their interest in the subject and help them to address a wide range of research issues, but they can also affect the ways in which research results are interpreted and reported. Studies that mix science and perspective can compromise public and scientific understanding of fishing effects, as perceived differences in evidence may actually reflect differences in interpretation. To improve the rigour of ‘fishing effects’ science, it would help if the benchmarks used to assess whether fishing effects ‘matter’ were always made explicit. These benchmarks might be the objectives set by the management authorities and/or a series of alternate objectives proposed and stated by the scientist. To demonstrate how the reported significance of fishing effects can depend on objectives, I use a simple model to predict the response of fish populations and communities to fishing. Fishing effects that would be reported as negative in relation to preservation or biodiversity objectives, such as declines in size, abundance and trophic level, occur at lower fishing intensities than those associated with meeting sustainability objectives for target species. When fishing pressure is so high that both conservation and fisheries objectives are not being met, the initial management actions to meet a range of objectives are likely to be compatible (e.g. reduce capacity, support alternate livelihoods).
 
(Continued).
Peer-reviewed management-strategy evaluation (MSE) studies and how they use probability statements.
Article
Scientists feel discomfort when they are asked to create certainty, where none exists, for use as an alibi in policy-making. Recently, the scientific literature has drawn attention to some pitfalls of simulation-based fisheries management-strategy evaluation (MSE). For example, while estimates concerning central tendencies of distributions of simulation outcomes are usually fairly robust because they are conditioned on ample data, estimates concerning the tails of distributions (such as the probability of falling below a critical biomass) are usually conditional on few data and thus often rely on assumptions that have no strong knowledge base. The clients of scientific advice, such as the European Commission, are embracing the mechanization of the evaluation of proposed Harvest Control Rules against the precautionary principle and management objectives. Where the fisheries management institutions aim for simple answers from the scientists, giving ‘green/red light’ to a proposed management strategy, the scientists are forced into a split position between satisfying the demands of their advisory role and living up to the standards of scientific rigour. We argue against the mechanization of scientific advice that aims to incorporate all relevant processes into one big model algorithm that, after construction, can be run without circumspection. We rather encourage that fisheries advice should be a dynamic process of expert judgement, incorporating separate parallel concurrent, lines of scientific evidence, from quantitative and qualitative modelling exercises and factual knowledge of the biology and the fishery dynamics. This process can be formalized to a certain degree and can easily accommodate stakeholder viewpoints.
 
Mass-specific power output by red muscle. Power output was measured using the work loop technique with in vivo activation conditions. Asterisks indicate a significant change in power output from anterior to posterior. Note that power output is highly variable and temperature dependent. Skipjack tuna produce in excess of 100 W kg−1 at 25 °C, while peak eel red muscle power production was less than 1.0 W kg−1 at 14 °C. The emphasis here is on longitudinal patterns of mass-specific power production within a fish. Sources: rainbow trout and largemouth bass, Coughlin (2000); scup, Rome et al. (1993), brook trout, McGlinchey et al. (2001); European eel, Ellerby et al. (2001a); tuna, Syme and Shadwick 2001).
Article
Axial swimming in fish varies across a range of body forms and swimming modes. Swimming by eels, tunas, mackerels, scup, rainbow trout and bass span this range from high curvature anguilliform swimmers to rigid body thunniform swimmers. Recent work on these and other species has elucidated an impressive array of solutions to the problem of how to use the red (aerobic, slow-twitch) muscle to power steady or sustained swimming. This review will use a comparative approach to understand the generalities of aerobic muscle function during steady swimming in fish and determine possible rules for the relationships between muscle contractile kinetics, in vivo muscle activity and power output during swimming. Beyond an exploration of the diversity in muscle activity and swimming kinematics, I suggest that analysis of the molecular basis for longitudinal variations in muscle function is needed to complement morphological and physiological research on fish muscle. This will permit both a general understanding of the integrative function of the fish myotome and, perhaps, predictive tools for muscle activity and swimming performance in fish.
 
Article
Objective evaluation of the global impact of fisheries on ocean ecosystems may be hampered by various biases suggesting natural variability of exploited species to be stronger and more widespread than is really the case. One of these is reporting biases: papers are usually not published which show that nothing has changed. Another such bias is that much variability is fishery-induced, i.e. due to the truncation by fishing of the age composition of exploited populations. A third source of bias, emphasized here, is that resulting from sampling a migrating population with a fixed device. This bias is illustrated by contrasting the relatively stable echo-acoustic estimates of biomass of Sardinella spp. along the north-west African coast, i.e. from Morocco and Mauritania to Senegal (data from 1992–98), with the more variable estimates of biomass in the waters of each of these countries. We conclude that published reports of ‘variability’ in exploited species should explicitly account for the effect of migrations and other movements, especially when such reports are to be used for contrasting fisheries-induced with environmental impacts on biomass.
 
Article
Africa has provided many fossil fishes from sediments laid down over a 400 million year period. The large array of fossil fishes come from diverse localities throughout the continent, representing a variety of environments. The marine fossil fishes of Africa have not been reviewed as a whole, while the freshwater Cenozoic fishes of Africa were last reviewed over 25 years ago. Since that time, many new finds have increased our knowledge of the history of African fishes. This paper summarizes the known fish fossils, excluding otoliths, from marine and freshwater deposits throughout Africa from the Palaeozoic, Mesozoic and first part of the Cenozoic (Palaeogene). Much new work is ongoing, in areas such as Mali and South Africa, from which more information on the ichthyofaunas should come to light. New information presented here includes the Eocene site of Mahenge, Tanzania, from which have come the oldest known members of the family Cichlidae.
 
Article
While the modern freshwater fish fauna of Africa has been the subject of considerable biological attention, there are few studies on the biogeography that include recent fossil reports. Since the publication of comprehensive reviews of Cenozoic freshwater fish faunas in Africa by Greenwood in the mid 1970s and updates in the late 1970s by Van Couvering, considerable collection and reporting of Cenozoic Africa fish has occurred. These specimens and reports have provided a considerable database from which to derive zoogeographical and biogeographical inferences. A pan-African fish fauna can be documented at the generic level throughout the Miocene in northern, central and eastern Africa, including Protopterus, Polypterus, Labeo, Alestes/Brycinus, Clarias/Heterobranchus, Synodontis, and Lates. The extinct genus Semlikiichthys (formerly Lates) may also be included in this pan-African fauna. Where the Miocene fish records were widely distributed through much of the African continent and were primarily fluvial-derived faunas, the Early Pliocene record is strictly a central and eastern one, mainly from lacustrine deposits. These reflect the new lacustrine habitats created through severe tectonic change, in the form of rifting and volcanism. The Pliocene faunas are characterised both by extinct taxa not previously recorded, and by immigrant taxa. By the Pleistocene the Rift systems were completely formed. However, ongoing volcanism and tectonics continued to alter the hydrological systems. In the Early and Middle Pleistocene, Lakes Albert and Edward both still had the widespread modern genera Lates and Synodontis, and several taxa known from previous deposits. However, all extinct taxa had disappeared, except Sindacharax (Characidae), which was still found in Lake Edward. In the Turkana Basin, there is continuity of most taxa from the Pliocene (except for Semlikiichthys, which is absent), as well as Miocene and Pliocene Sindacharax species. In the Middle Pleistocene, Sindacharax disappears from the African fossil record. Also, in the Pleistocene, several hydrological systems lose their pan-African faunas, including Lake Edward, Lake Victoria and the Maghreb. The modern faunas are not as diverse at the family level as previously. This history of the Neogene African fish fauna is necessarily incomplete without fossil records from many regions of Africa, particularly in the west and south.
 
Article
Despite the large economic and social benefits fisheries can offer to address Africa’s development needs, investment in African fisheries and aquaculture has been remarkably low. However, if fisheries and aquaculture are to meet the challenges of technological change, institutional reforms and resource mobilization needed in support of the sector’s development potential, fisheries stakeholders must make the case for investment much more clearly within the context of wider socioeconomic development. In this paper, we argue that the global consensus around the Millennium Development Goals (MDGs) offers an important opportunity to pursue this agenda in Africa. In particular the MDGs’ human development focus provides a compelling framework for articulating the comprehensive value of fisheries for poverty reduction and long-term socioeconomic development. The paper has two objectives. The first is to examine the direct and indirect links between fisheries and the individual MDGs, drawing together findings and lessons learnt from recent African case studies with relevant examples from elsewhere. The second is to translate these findings into recommendations for action in support of improved investments in fisheries aimed at increasing the overall development value of the sector.
 
Article
Lungfish have a large fossil record that started over 400 Ma ago and a relict modern diversity within Australia, Africa and South America. Their study mostly concentrates on their sister-group relationship with the tetrapod vertebrates, on their early evolution and on the physiology of their air breathing and of the ability of certain species to aestivate. Conversely, little is known about the evolutionary history of modern taxa. In this study, the focus is on the single polytypic extant genus, Protopterus. Four species and seven subspecies are currently present in African freshwater. As fossils, Protopterus are recognized by their heavy tooth plates. Indeed, the review of the diagnostical characters shows that so far we are not able to confidently distinguish fossil species. The fossil record is thus explored through the analysis of the distribution of the genus. A comprehensive scenario for their evolutionary history is built by including also knowledge of the ecology, distribution and phylogeny of modern Protopterus, in the context of the environmental changes that affected Africa over the last 100 Ma. The genus has been present in Africa for at least 100 Ma when the continent separated from South America. Northern Africa might be the cradle for the African lineage, but other regions of Africa cannot be ruled out. During the Paleogene, lungfish disappeared from northern Africa, whereas modern Protopterus arose in a peri-equatorial area with dispersal from this area late in the Pliocene. This correlates with great environmental change that occured during the last 25 Ma in eastern Africa.
 
Poster distributed as part of the Secretariat of the Pacific Community (SPC) ‘Safe Seafaring’ campaign to reduce incidences of sexually transmitted diseases, including HIV/AIDS (source: Peteru and Lambeth 2000).
Article
Fishing communities are often among the highest-risk groups in countries with high overall rates of HIV/AIDS prevalence. Vulnerability to HIV/AIDS stems from complex, interacting causes that may include the mobility of many fisherfolk, the time fishermen spend away from home, their access to daily cash income in an overall context of poverty and vulnerability, their demographic profile, the ready availability of commercial sex in fishing ports and the subcultures of risk taking and hypermasculinity among some fishermen. The subordinate economic and social position of women in many fishing communities in low-income countries makes them even more vulnerable. HIV/AIDS in fishing communities was first dealt with as a public health issue, and most projects were conducted by health sector agencies and NGOs, focusing on education and health care provision. More recently, as the social and economic impacts of the epidemic have become evident, wider social service provision and economic support have been added. In the last 3 years, many major fishery development programmes in Africa, South/South-East Asia and the Asia-Pacific region have incorporated HIV/AIDS awareness in their planning. The HIV/AIDS pandemic threatens the sustainability of fisheries by eclipsing the futures of many fisherfolk. The burden of illness puts additional stresses on households, preventing them from accumulating assets derived from fishing income. Premature death robs fishing communities of the knowledge gained by experience and reduces incentives for longer-term and inter-generational stewardship of resources. Recent projects championing local knowledge and resource-user participation in management need to take these realities into account. If the fishing communities of developing countries that account for 95% of the world's fisherfolk and supply more than half the world's fish are adversely impacted by HIV/AIDS, then the global supply of fish, particularly to lower-income consumers, may be jeopardized.
 
Article
An individual's behaviour patterns can be conceptualized as a series of threat-sensitive trade-offs between ambient predation pressure and a suite of fitness-related activities, such as resource defence, foraging and mating. Individuals that can reliably assess local predation risk could increase their fitness potential by exhibiting predator avoidance behaviours only at appropriate times. However, such learned risk assessment requires reliable information regarding current predation risks.A diverse range of prey fishes are known to possess chemical alarm cues, which when detected by conspecifics and some heterospecifics, elicit a variety of overt and covert responses. These chemical cues, either alone or as a part of a predator's dietary odour, provide reliable information regarding local predation risk. In this review, I describe recent works examining the role of chemosensory information in: (i) acquired predator recognition, (ii) predator inspection behaviour and (iii) the use of conspecific and heterospecific cues as social information sources.
 
Article
Offshore- and deepwater-spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore-spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage-specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ‘problem’ of planktonic drift and juvenile settlement.
 
Article
The common practice among researchers who study fish growth is to a priori adopt the von Bertalanffy growth model (VBGM), which is the most used and ubiquitous equation in the fisheries literature. However, in many cases VBGM is not supported by the data and many species seem to follow different growth trajectories. The information theory approach frees the researcher from the limiting concept that a ‘true’ growth model exists. Multi-model inference (MMI) based on information theory is proposed as a more robust alternative to study fish growth. The proposed methodology was applied to 133 sets of length-at-age data. Four candidate models were fitted to each data set: von Bertalanffy growth model (VBGM), Gompertz model, Logistic and the Power model; the three former assume asymptotic and the latter non-asymptotic growth. In each case, the ‘best’ model was selected by minimizing the small-sample, bias-corrected form of the Akaike information criterion (AICc). To quantify the plausibility of each model, the ‘Akaike weight’wi of each model was calculated. Following a MMI approach, the model averaged asymptotic length for each case was estimated, by model averaging estimations of interpreting Akaike weights as a posterior probability distribution over the set of candidate models. The VBGM was not selected as the best model in 65.4% of the cases. Most often VBGM was either strongly supported by the data (with no other substantially supported model) or had very low or no support by the data. The estimation of asymptotic length was greatly model dependent; as estimated by VBGM was in every case greater than that estimated by the Gompertz model, which in turn was always greater than that estimated by the Logistic model. The percentage underestimation of the standard error of , when ignoring model selection uncertainty, was on average 18% with values as high as 91%. Ignoring model selection uncertainty may have serious implications, e.g. when comparing the growth parameters of different fish populations. Multi-model inference by model averaging, based on Akaike weights, is recommended as a simple and easy to implement method to model fish growth, for making robust parameter estimations and dealing with model selection uncertainty.
 
Article
We investigate the performance of different governance arrangements (command-and-control, self-governance and co-management) in terms of sustainability and conservation when the discount factor of the regulator is different from the discount factor of fishers. For exogenous discount factors, self-governance management regimes do better than command-and-control in terms of the long-term sustainability of the fish resources, if the fisher’s discount factor is higher than that of the regulator, and vice versa if the discount factor of the regulator is higher. Under the assumption of endogenous discount factors, the decision whether to promote a command-and-control management system or a self-governance or co-management structure will depend on: (i) the magnitude of the intertemporal preferences of both the fishers and the regulator; and (ii) the relative weight or political influence of the fishers on the regulators’ decision-making process. Hence, this contribution highlights the possibility that command-and-control can be less sustainable than self-governance and vice versa. It is therefore important to explicitly take account of intertemporal preferences in the decision-making process if a governance system for a given fishery is to succeed. For many fisheries, it is difficult to know the ‘true’ discount factors of both fishers and governments, hence, the practical message from this paper is that to guide against over exploitation of fishery resources, it is prudent to put in place co-management arrangements, since both discount factors, whatever they may be, will be weighted into the decision-making process.
 
Map showing the original, native pre-12th century distribution of the European bitterling (Rhodeus amarus) in Europe.
Continued.
Map showing the main areas of intensive carp cultivation in Europe around 1500 (modified from Hoffmann 1995).
The earliest known representation of the bitterling (a female with an extended ovipositor) from the anonymous (early 15th century) Flemish bestiary ‘Liber de naturis rerum creatarum’.
Fluctuations of temperature in western Europe since the 12th century. Reconstruction of the climate proxy record for the region of the Netherlands and Belgium. Data are normalized to a zero mean and unit standard deviation (vertical bar) during the period 1200–1995 (after Osborn and Briffa 2006). The bitterling is recorded from several west European countries during the relatively warm period from approximately 1150 to approximately 1560. During the period 1570–1700, in the coldest phase of the Little Ice Age (with the unit standard deviation almost permanently remains below the normalized zero mean), only a single record of bitterling is known. Records started to increase from 1770 onwards and rise dramatically around 1850 at the end of the Little Ice Age. The decline of western European populations between approximately 1950 and 1970 coincides with a decline in temperature evident.
Article
The European bitterling is considered to be a native species over much of its present range in Europe. A dramatic decline in its abundance from 1960 to 1980 in west and central Europe, attributed to aquatic pollution, led to the establishment of stringent national and international regulations for protection of the species. Here, we review the evidence that until AD 1100 the bitterling was restricted to the Ponto-Caspian and Aegean regions (south-eastern Europe and adjacent regions of Asia Minor) and only expanded into its present range during the 19th century. The earliest records of bitterling in west and central Europe are from regions where carp cultivation was common and the bitterling appears to have spread into this region in association with the gradual expansion of carp cultivation. After an initial period of expansion, between approximately 1150 and 1560 in regions with carp cultivation, the species virtually disappeared from Europe during the coldest period of the Little Ice Age. Bitterling reappeared at the end of the 18th century, initially in historical centres of carp cultivation, and was again abundant and widespread in Europe by around 1850. Its reappearance appears to have been through expansion of refuge populations as well as new invasions. The decline in abundance of bitterling during the period 1960–80 in west and central Europe appears not only to have been caused by pollution, as is generally believed, but may also be correlated with low spring temperatures. From approximately 1980 onwards the European bitterling once again expanded its distribution in many parts of Europe, particularly in eastern Europe. This recent expansion may be due to a combination of factors, including a rise in ambient temperature coupled with an increase in anthropogenic dispersal and changes to aquatic habitats favourable to bitterling. Thus, the bitterling, which is legally protected in Europe at a national and international level as an endangered indigenous species, is actually an invasive species and a parasite of freshwater mussels. Its current expansion in distribution could pose a hazard to freshwater mussel populations in regions where they are already threatened.
 
Article
Amphidromy is a distinctive form of diadromy that involves some fish, decapod crustaceans and gastropod molluscs. Characteristic elements in amphidromy are: reproduction in fresh water, passage to sea by newly hatched larvae, a period of feeding and growing at sea usually a few months long, return to fresh water of well-grown juveniles, a further period of feeding and growing in fresh water, followed by reproduction there. This life-history strategy is observed in numerous fish species, primarily in islands of the tropics and subtropics (probably more than 75 species, especially sicydiine gobies), and extends to temperate countries as far as Japan in the north and New Zealand in the south. There has been considerable confusion about the nature of amphidromy and its distinctiveness from anadromy, another category of diadromy. The return to freshwater of small juveniles of amphidromous fishes is functionally and strategically different from the return of large mature adults, as happens in anadromy. The strategy is recognized as distinctive by numerous fish biologists who work with amphidromous fishes, although it has tended to be rejected or ignored by others, typically those who have no personal experience with them.
 
Article
Amphidromy is a frequent attribute of fish faunas of remote islands, where the presence of freshwater fishes creates perplexity as to how such remote places came to have ‘freshwater fish’. Not infrequently, the fact that amphidromous species spend part of their lives in the sea is invoked as indicating that such species have marine ancestries, and this is the implied explanation for presence of freshwater fishes on islands. However, examination of the ranges of some amphidromous species, and of the distributions of genera to which amphidromous fishes belong, strongly suggests that amphidromy, especially in the gobies of the subfamily Sicydiinae, is a widespread, probably ancestral trait. Rather than such amphidromous fish having a marine ancestry, their marine life stages are themselves the likely key element in explaining their distributions.
 
Article
Suggestions that anadromy predominates in northern high latitudes because boreal marine seas have high primary productivity are questioned. Instead, post-Pleistocene invasion of far northern fresh waters, which became inhabitable as Pleistocene temperatures ameliorated, via coastal seas, is suggested as a primary cause for northern distributions of widely anadromous fish families. Also, cold temperature preferences may be implicated in determining the ranges of these families, as well as the inhospitability of far northern fresh waters and the lack of ecosystem space to support the huge populations of boreal anadromous fishes. Moreover, there are significant numbers of tropical anadromous fish species.
 
Article
Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested.
 
Article
Marine protected areas (MPAs) are often promoted as tools for biodiversity conservation as well as for fisheries management. Despite increasing evidence of their usefulness, questions remain regarding the optimal design of MPAs, in particular concerning their function as fisheries management tools, for which empirical studies are still lacking. Using 28 data sets from seven MPAs in Southern Europe, we developed a meta-analytical approach to investigate the effects of protection on adjacent fisheries and asking how these effects are influenced by MPA size and age. Southern European MPAs showed clear effects on the surrounding fisheries, on the ‘catch per unit effort’ (CPUE) of target species, but especially on the CPUE of the marketable catch. These effects depended on the time of protection and on the size of the no-take area. CPUE of both target species and the marketable catch increased gradually by 2–4% per year over a long time period (at least 30 years). The influence of the size of the no-take area appeared to be more complex. The catch rates of the entire fishery in and around the MPA were higher when the no-take areas were smaller. Conversely, catch rates of selected fisheries that were expected to benefit most from protection increased when the no-take area was larger. Our results emphasize the importance of MPA size on its export functions and suggest that an adequate, often extended, time frame be used for the management and the evaluation of effectiveness of MPAs.
 
Article
Designing fishing policies without knowledge of past levels of target species abundance is a dangerous omission for fisheries management. However, as fisheries monitoring started long after exploitation of many species began, this is a difficult issue to address. Here we show how the ‘shifting baseline’ syndrome can affect the stock assessment of a vulnerable species by masking real population trends and thereby put marine animals at serious risk. Current fishery data suggest that landings of the large Gulf grouper (Mycteroperca jordani, Serranidae) are increasing in the Gulf of California. However, reviews of historical evidence, naturalists’ observations and a systematic documentation of fishers’ perceptions of trends in the abundance of this species indicate that it has dramatically declined. The heyday for the Gulf grouper fishery occurred prior to the 1970s, after which abundance dropped rapidly, probably falling to a few percent of former numbers. This decline happened long before fishery statistics were formally developed. We use the case of the Gulf grouper to illustrate how other vulnerable tropical and semi-tropical fish and shellfish species around the world may be facing the same fate as the Gulf grouper. In accordance with other recent studies, we recommend using historical tools as part of a broad data-gathering approach to assess the conservation status of marine species that are vulnerable to over-exploitation.
 
Article
It is often said that managing fisheries is managing people. This truism implies that fisheries science inherently involves disciplines that focus on fish and their population dynamics, humans and their behaviour, and policy and decision making. This is particularly true for recreational fisheries, where the human behavioural motivation and human response to management actions may be more difficult to predict than in commercial fisheries. We provide a synthesis of the multi-disciplinary literature on modelling recreational angler behaviour to inform management of recreational fisheries. We begin by defining the recreational fisheries system in an interdisciplinary manner. We then assess the literature for empirical evidence of disciplinary crossover. Using bibliometric data, we provide evidence that there is little disciplinary crossover, particularly between fisheries biology, including applied ecology, and quantitative social science, including economics. We identify critical barriers to disciplinary crossover, such as database indexing issues and nomenclature. Next, we provide a review of critical contributions to the literature, and locate these contributions within our interdisciplinary conceptualization of the recreational fisheries system. This synthesis is intended to be a cross-disciplinary bridge to facilitate access to the broader literature on modelling angler behaviour, with the ultimate goal of improving recreational fisheries management.
 
Article
Obtaining reliable estimates of important parameters from recreational fisheries is problematic but critical for stock assessment and effective resource management. Sampling methodologies based on traditional design-based sampling theory, is inadequate in obtaining representative catch and effort data, social or demographical characterization, or fisher behaviour from small hard-to-reach components within recreational fisheries (e.g. specialized sport fisheries) that may account for the majority of the catch for some species. A model-based approach to sampling is necessary. Researchers in other disciplines including epidemiology and social sciences routinely survey rare or ‘hidden’ populations within the general community by penetration of social networks rather than by interception of individuals. We encourage fisheries researchers to rethink survey designs and consider the social elements of recreational fishing. Employing chain-referral methods, such as respondent-driven sampling (RDS), may be a statistically robust and cost-effective option for sampling elusive sub-elements within recreational fisheries. Chain-referral sampling methodology is outlined and an example of a complemented ‘RDS-recapture’ survey design is introduced as a cost-effective application to estimating total catch in recreational fisheries.
 
Samples analysed for iron content.
Article
Iron is the limiting micronutrient in the Southern Ocean and experiments have demonstrated that addition of soluble iron to surface waters results in phytoplankton blooms, particularly by large diatoms. Antarctic krill (Euphausia superba) eat diatoms and recycle iron in surface waters when feeding. Baleen whales eat krill, and, historically, defecation by baleen whales could have been a major mechanism for recycling iron, if whale faeces contain significant quantities of iron. We analysed the iron content in 27 samples of faeces from four species of baleen whale. Faecal iron content (145.9 ± 133.7 mg kg−1) is approximately ten million times that of Antarctic seawater, suggesting that it could act as a fertilizer. Furthermore, we analysed the iron content of seven krill species and of muscle tissue of two species of baleen whales; all samples had high iron levels. Using these figures, together with recent estimates of the range and biomass of krill, we calculate that the Antarctic krill population contains ∼24% of the total iron in the surface waters in its range. Thus, krill can act as a long-term reservoir of iron in Antarctic surface waters, by storing the iron in their body tissue. Pre-exploitation populations of whales and krill must have stored larger quantities of iron and would have also recycled more iron in surface waters, enhancing overall ocean productivity through a positive feedback loop. Thus, allowing the great whales to recover might actually increase Southern Ocean productivity through enhancing iron levels in the surface layer.
 
Article
Among the endemic notothenioid fish of Antarctica, the Antarctic silverfish (Pleuragramma antarcticum) is the only species in which all developmental stages live throughout the water column. It is widely distributed in the shelf waters around the continent, inhabiting both open waters and areas of pack ice at depths from 0 to 900 m. In successfully occupying this habitat, it evolved a suite of specific biological, ecological and physiological adaptations to the environmental conditions in the cold and highly seasonal Antarctic waters. Specialization for the pelagic environment evolved over millions of years enabled life under unusual environmental constraints and colonization of the pelagic realm of the Antarctic continental shelf. A sudden change of environmental conditions driven by the current rapid climate change could negatively affect this weak equilibrium, with a catastrophic cascade effecting higher trophic levels. Indeed, as both adults and early life stages of the Antarctic silverfish appear to be strongly dependent on sea-ice, this species would be especially sensitive to climatic or oceanic changes that reduce the extent of sea-ice cover or the timing of formation of coastal polynyas.
 
Cumulative number of krill-related patents lodged from 1976 to 2008 (see text for sources).
The projected catch of krill, as indicated in the notifications to participate in the krill fishery provided annually to CCAMLR, compared to the annual catch reported to CCAMLR (data from Reports of the CCAMLR Scientific Committee).
Precautionary catch limits on the krill fishery in the CCAMLR Area. The various statistical areas are indicated; surveyed areas have been heavily outlined and labelled. The fishery is currently only operating in the South west Atlantic (Area 48.1, 48.2 and 48.3), but it operated in parts of the South Indian and Pacific Ocean sectors in the 1970s to mid-1990s.
Article
The fishery for Antarctic krill (Euphausia superba) is the largest by tonnage in the Southern Ocean. The catch remained relatively stable at around 120 000 tonnes for 17 years until 2009, but has recently increased to more than 200 000 tonnes. The Commission for the Conservation of Antarctic Marine Living Resources precautionary catch limits for this species total over 8.6 million tonnes so it remains one of the ocean’s largest known underexploited stocks. Recent developments in harvesting technology and in products being derived from krill indicate renewed interest in exploiting this resource. At the same time, there are changes in the Southern Ocean environment that are affecting both krill and the fishery. This paper summarizes the current state of this fishery and highlights the changes that are affecting it.
 
Article
Early research into the causes of geographical variation in antipredator behaviour in fishes revealed that population differences have an underlying genetic basis. However, evidence from a variety of fish species suggests that learning plays an important role in the development of antipredator responses. Here, we consider the opportunities for learning during the three main stages of a predator–prey interaction: detection, recognition and assessment, and attack avoidance. Much of the evidence for learning is based on the recognition and assessment stage of the predator–prey interaction, but this may reflect methodological biases. We also examine the relative roles of different sensory cues, in particular, vision and olfaction, and the importance of individual vs. social learning. We provide evidence that visual predator recognition skills are largely built on unlearned predispositions, whereas olfactory recognition typically involves experience with conspecific alarm cues. Populations display variation in their propensity to learn, and we predict that ecological factors are likely to mediate the balance between individual and social learning.
 
Top-cited authors
Reg Watson
  • University of Tasmania
Edward H Allison
  • University of Washington Seattle
William Cheung
  • University of British Columbia - Vancouver
André E. Punt
  • University of Washington Seattle
Vicky Lam
  • University of British Columbia - Vancouver