Energies

Published by MDPI

Online ISSN: 1996-1073

Articles


Fig. 2. Comparison gas composition for (a) palm kernel shell, (b) coconut shell and (c) bagasse at different temperature Figure 2 illustrates that hydrogen mol fraction significantly increased while the content of other produced gas particularly methane (CH 4 ) showed an opposite trend for all studied samples. This is in accordance with Le Chatelier’s principle; higher temperatures favour the 
Fig. 4. Effect of feeding rate on gas composition at optimized condition of palm kernel shell gasification 
Fig. 5. Effect of particle size on gas composition at optimized condition of palm kernel shell gasification 
Air Gasification of Malaysia Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance
  • Chapter
  • Full-text available

December 2011

·

1,113 Reads

·

·

Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900 degrees C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900 degrees C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.
Download
Share

Figure 4: Boiling point elevation of the ZnCl 2 solutions at 1 atm pressure. Data provided by Italshell [1]. The concentration is expressed as the ratio between the mass of the solute and the total mass of the solution. The lines are the linear approximation for dilute solutions, for two different values of the van 't Hoff factor. The actual boiling point elevation has an evident deviation from the ideal solution, also at low concentrations. A quite high boiling temperature is observed in concentrated solutions. 
Figure 7: Example of charge-discharge cycle. The cycle is clockwise. 
Figure 10: Average dissipated power density at Zn electrode. 
Figure 11: Example of AccMix cycle. The cycle is counterclockwise. The voltage rise is approximately 160 mV. The overvoltage, that reduces the cycle's surface, results from the flowing current of 4 mA. 
Figure 12: Average gained power in AccMix cycles. The concentrations of the ZnCl 2 solutions are c A = 4.5% and c C = 68%. The lines represent an evaluation of the power production obtained by subtracting the power dissipation, measured during charge/discharge cycles, from an "ideal" power production, obtained by assuming a voltage rise of 160 mV and no overvoltage. 
Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference

March 2014

·

873 Reads

The conversion of heat into current can be obtained by a process with two stages. In the first one, the heat is used for distilling a solution and obtaining two flows with different concentrations. In the second stage, the two flows are sent to an electrochemical cell that produces current by consuming the concentration difference. In this paper, we propose such an electrochemical cell, working with water solutions of zinc chloride. The cell contains two electrodes, made respectively of zinc and silver covered by silver chloride. The operation of the cell is analogous to that of the capacitive mixing and of the "mixing entropy battery": the electrodes are charged while dipped in the concentrated solution and discharged when dipped in the diluted solution. The cyclic operation allows us to extract a surplus of energy, at the expense of the free energy of the concentration difference. We evaluate the feasibility of such a cell for practical applications, and find that a power up to 2 W per square meter of surface of the electrodes can be achieved.

Towards a Simplified Dynamic Wake Model using POD Analysis

January 2015

·

323 Reads

We apply the proper orthogonal decomposition (POD) to large eddy simulation data of a wind turbine wake in a turbulent atmospheric boundary layer. The turbine is modeled as an actuator disk. Our analyis mainly focuses on the question whether POD could be a useful tool to develop a simplified dynamic wake model. The extracted POD modes are used to obtain approximate descriptions of the velocity field. To assess the quality of these POD reconstructions, we define simple measures which are believed to be relevant for a sequential turbine in the wake such as the energy flux through a disk in the wake. It is shown that only a few modes are necessary to capture basic dynamical aspects of these measures even though only a small part of the turbulent kinetic energy is restored. Furthermore, we show that the importance of the individual modes depends on the measure chosen. Therefore, the optimal choice of modes for a possible model could in principle depend on the application of interest. We additionally present a possible interpretation of the POD modes relating them to specific properties of the wake. For example the first mode is related to the horizontal large scale movement. Besides yielding a deeper understanding, this also enables us to view our results in comparison to existing dynamic wake models.

Fatigue Loads Estimation Through a Simple Stochastic Model

October 2014

·

412 Reads

We propose a procedure to estimate the fatigue loads on wind turbines, based in a recent framework used for reconstructing data series of stochastic properties measured at wind turbines. Through a standard fatigue analysis, we show that it is possible to accurately estimate fatigue loads in any wind turbine within one wind park, using only the load measurements at one single turbine and the set of wind speed measurements. Our framework consists of deriving a stochastic differential equation that describes the evolution of the torque at one wind turbine driven by the wind speed. The stochastic equation is derived directly from the measurements and is afterwards used for predicting the fatigue loads at neighboring turbines. Such a framework could be used to mitigate the financial efforts usually necessary for placing measurement devices in all wind turbines within one wind farm. Finally, we also discuss the limitations and possible improvements of the proposed procedure.

Figure 1. Small medium large system (SMLsystem) sensors and actuators map.  
Table 1. Energy consumption per subsystem. HVAC: heating, ventilation and air conditioning; HE: home electronics. 
Figure 2. Artificial neural network (ANN) topology for time series forecasting.  
Figure 3. Mean absolute error (MAE) box-and-whisker plots for ANNs with one hidden layer and the hyper-parameters of the grid search performed to optimize the ANN model, d + h. The x-axis of the learning rate, momentum and weight decay are log-scaled.  
Figure 4. MAE box-and-whisker plots for ANNs with two hidden layers and the hyper-parameters of the grid search performed to optimize the ANN model, d + h. The x-axis of the learning rate, momentum and weight decay are log-scaled.  
Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

October 2013

·

545 Reads

The small medium large system (SMLSystem) is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH) for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs), which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC---heating, ventilation and air conditioning---system consumption. HVAC systems at the SMLSystem house represent 53.9% of the overall power consumption. The energy used to maintain temperature was measured to be 30--38.9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.

Fifty Years of Magnetic Fusion Research (1958–2008): Brief Historical Overview and Discussion of Future Trends

June 2010

·

1,159 Reads

Fifty years ago, the secrecy surrounding magnetically controlled thermonuclear fusion had been lifted allowing researchers to freely share technical results and discuss the challenges of harnessing fusion power. There were only four magnetic confinement fusion concepts pursued internationally: tokamak, stellarator, pinch, and mirror. Since the early 1970s, numerous fusion designs have been developed for the four original and three new approaches: spherical torus, field-reversed configuration, and spheromak. At present, the tokamak is regarded worldwide as the most viable candidate to demonstrate fusion energy generation. Numerous power plant studies (>50), extensive R&D programs, more than 100 operating experiments, and an impressive international collaboration led to the current wealth of fusion information and understanding. As a result, fusion promises to be a major part of the energy mix in the 21st century. The fusion roadmaps developed to date take different approaches, depending on the anticipated power plant concept and the degree of extrapolation beyond ITER. Several Demos with differing approaches will be built in the US, EU, Japan, China, Russia, Korea, India, and other countries to cover the wide range of near-term and advanced fusion systems.

Tanabe, K. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures. Energies, 2009, 2, 504-530.

September 2009

·

119 Reads

I have stated in my recent review article [1] that no direct observation of multiple exciton generation (MEG) in the shape of photocurrent extracted from a semiconductor had been made yet. However, there have been indeed a couple of reports on the photocurrent measurements for colloidal II-VI semiconductor compound quantum dot (QD) and polymer-QD composite solar cells and photodetectors to indicate MEG in the QDs, including demonstrations of over-100% external quantum efficiencies [2-4]. Particularly, Sukhovatkin et al. have presented a universal spectral quantum efficiency enhancement curve dependent only on bandgap-normalized photon energy consistent among photodetectors with varied PbS QD bandgap energies as a signature of MEG, eliminating potential artifactual explanations for the observed photocurrent enhancement represented by external trap states induced absorption or transitions [5]. © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

Oil and the Best Brain of the 20th Century

May 2010

·

172 Reads

If you meet someone at a party who says that he is Napoleon, you don’t start discussing cavalry tactics at Waterloo ─ Professor Robert SolowWell that depends, Robert. If he is the gentleman who gave the party, and you would like to receive another invitation from him some day, you might feel it wise to suggest that if his boys had been riding elephants or dinosaurs instead of horses, he might have enjoyed another few years in swinging Paris instead of being turned over to that nasty Sir Hudson Lowe on St. Helena. [...]

A proposal for CO 2 Abatement in urban areas: The UDR1-Lethe© turbo-hybrid vehicle

December 2011

·

224 Reads

For years the interest of the University of Roma 1 (UDR1) research group has been focused on the development of a Hybrid Series vehicle (called Lethe©), different from standard ones, thanks to the use of a Gas Turbine (GT) set as a thermal engine. The reason for this choice resides in the opportunity to reduce weight and dimensions, in comparison to a traditional Internal Combustion Engine. It’s currently not possible to use the GT engine set directly for the vehicle traction, so the UDR1 HS configuration only shows the GT set connected with the electric generator. The result is that the traction is purely electric. The resulting engine configuration is commonly described as a Hybrid Series Plug In. Several previous studies have been carried out, and this research has allowed us to define the correct ratio (Degree of Hybridization) between the installed power of the battery pack and that of the GT electric generator which simultaneously guarantee the main life for the battery package and the capacity of the vehicle to complete a common mission without lack of energy or stopping. This article reports the final step of the research: once all data has been calculated, how to “hybridize” a commercial city car, passenger sedan or any other vehicle.

Figure 1. A simplified single line diagram of a sample HVDC interconnection of wind generation sources and ac grids. 
Table 2 . Analytical relationships of power semiconductor per-unitized currents and voltages.
Table 3 . Summary of semiconductor selection and utilization data for converter realization.
An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

June 2010

·

2,183 Reads

The application of high voltage dc (HVDC) transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV) ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC) using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC) is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC) has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

Figure 1. The number of issued and cancelled EECS certificates per year from 2001 to 2008 (1 certificate equals 1 MWh) [12]. 
Figure 3. Comparison of a common Nordic residual mix for 2007, based on the present 
Calculation of Residual Electricity Mixes when Accounting for the EECS (European Electricity Certificate System) — the Need for a Harmonised System

September 2009

·

224 Reads

According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe.

Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

December 2009

·

3,332 Reads

Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol) for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10) were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95%) without affecting the original activity of the clay.

A Low Cost Wireless Data Acquisition System for a Remote Photovoltaic (PV) Water Pumping System

December 2011

·

1,475 Reads

This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system’s hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet.

Figure 2. Configuration of battery test bench.
Figure 13. Adaptive observer based SoC estimation.
Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer

September 2010

·

1,219 Reads

In order to safely and efficiently use the power as well as to extend the lifetime of the traction battery pack, accurate estimation of State of Charge (SoC) is very important and necessary. This paper presents an adaptive observer-based technique for estimating SoC of a lithium-ion battery pack used in an electric vehicle (EV). The RC equivalent circuit model in ADVISOR is applied to simulate the lithium-ion battery pack. The parameters of the battery model as a function of SoC, are identified and optimized using the numerically nonlinear least squares algorithm, based on an experimental data set. By means of the optimized model, an adaptive Luenberger observer is built to estimate online the SoC of the lithium-ion battery pack. The observer gain is adaptively adjusted using a stochastic gradient approach so as to reduce the error between the estimated battery output voltage and the filtered battery terminal voltage measurement. Validation results show that the proposed technique can accurately estimate SoC of the lithium-ion battery pack without a heavy computational load.

A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides

December 2010

·

335 Reads

The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw, Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride, LiAlH4, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor, is able to desorb relatively large quantities of hydrogen at RT, 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.

High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature

December 2009

·

267 Reads

This paper presents the performance of an advanced cascading adsorption cycle that utilizes a driven heat source temperature between 90–130 ºC. The cycle consists of four beds that contain silica gel as an adsorber fill. Two of the beds work in a single stage cycle that is driven by an external heat source, while the other two beds work in a mass recovery cycle that is driven by waste heat of sensible and adsorption heat of the high temperature cycle. The performances, in terms of the coefficient of performance (COP) and the specific cooling power (SCP), are compared with conventional cascading-without-mass-recovery and single-stage cycles. The paper also presents the effect of the adsorbent mass on performance. The results show that the proposed cycle with mass recovery produces as high of a COP as the COP that is produced by the conventional cascading cycle. However, it produces a lower SCP than that of the single-stage cycle.

Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair

November 2010

·

465 Reads

Marlinda

·

·

Miyazaki Takahiko

·

[...]

·

A numerical investigation of the double-effect adsorption refrigeration cycle is examined in this manuscript. The proposed cycle is based on the cascading adsorption cycle, where condensation heat that is produced in the top cycle is utilized as the driving heat source for the bottom cycle. The results show that the double-effect cycle produces a higher coefficient of performance (COP) as compared to that of the conventional single-stage cycle for driving temperatures between 100 °C and 150 °C in which the average cycle chilled water temperature is fixed at 9 °C. Moreover, the COP of the double-effect cycle is more than twice that of the single-stage cycle when the temperature reaches 130 °C. It is also observed that the adsorbent mass ratio of the high temperature cycle (HTC) to the low temperature cycle (LTC) affects the performance of the double-effect adsorption refrigeration cycle.

Experimental Investigation of a Three-Bed Adsorption Refrigeration Chiller Employing an Advanced Mass Recovery Cycle

September 2009

·

380 Reads

The performance of an advanced three-bed adsorption chiller with a mass recovery cycle has been experimentally investigated in the present study. The temperature and pressure of various components of the chiller were monitored to observe the dynamic behaviour of the chiller. The performances in terms of the coefficient of performance (COP) and specific cooling power (SCP) were compared with a conventional single stage. The results show that the proposed cycle produces COP and SCP values superior to those of the conventional single stage cycle for heat source temperature below 75 °C.

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

December 2011

·

586 Reads

Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure

April 2010

·

639 Reads

Silicon-based solar cells (SCs) promise to be an alternative energy source mainly due to: (1) a high efficiency-to-cost ratio, (2) the absence of environmental-degradation issues, and (3) great reliability. Transition from wafer-based to thin-film SC significantly reduces the cost of SCs, including the cost from the material itself and the fabrication process. However, as the thickness of the absorption (or the active) layer decreases, the energy-conversion efficiency drops dramatically. As a consequence, we discuss here three techniques to increase the efficiency of silicon-based SCs: (1) photonic crystal (PC) optical couplers and (2) plasmonic optical couplers to increase efficiency of light absorption in the SCs, and (3) a radial p-n junction structure, decomposing light absorption and diffusion path into two orthogonal directions. The detailed mechanisms and recent research progress regarding these techniques are discussed in this review article.

Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

April 2010

·

3,334 Reads

Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling) by highlighting the current problems (low cell voltage, low current density, stability) will be presented.

Table 2 . The operating parameters and experiment results of some major DCL processes [3-9].
Recent Advances in Direct Coal Liquefaction

February 2010

·

2,123 Reads

The growing demand for petroleum, accompanied by the declining petroleum reserves and the concerns over energy security, has intensified the interest in direct coal liquefaction (DCL), particularly in countries such as China which is rich in coal resources, but short of petroleum. In addition to a general introduction on the mechanisms and processes of DCL, this paper overviews some recent advances in DCL technology with respect to the influencing factors for DCL reactions (temperature, solvent, pressure, atmospheres, etc.), the effects of coal pre-treatments for DCL (swelling, thermal treatment, hydrothermal treatment, etc.), as well as recent development in multi-staged DCL processes, DCL catalysts and co-liquefaction of coal with biomass.

Mass and Aerodynamic Imbalance Estimates of Wind Turbines

April 2010

·

6,262 Reads

Due to its effect on the operation time of wind turbines, rotor imbalances of a wind turbine have to be detected early enough. We present a method that determines inhomogeneous mass distributions of the rotor as well as deviations in the pitch angles of the rotor blades from vibrational data only. To this end, a mathematical model connecting the load caused by the imbalances to the resulting vibrations was developed. After discretization, the resulting vibration equation was solved analytically. The inverse problem, i.e., the calculation of the mass and aerodynamic imbalance from vibrational data, was solved by using nonlinear regularization theory. Numerical simulations were performed using artificial vibration data.

Figure 1 . Positions of detection modules at sending end D113. 
Figure A4 : The system diagnostic test. 
Figure A5 . The calculation algorithm for the current I. 
Figure A6 . The calculation algorithm for the active power P. 
Fault Diagnosis on Medium Voltage (MV) Electric Power Distribution Networks: The Case of the Downstream Network of the AES-SONEL Ngousso Sub-Station

June 2009

·

1,343 Reads

An analysis of the Medium Voltage (MV)electricity power distribution network operated by Cameroon’s AES-SONEL company shows that losses are very high due to energy which is produced but not distributed and that the duration of power interruptions as a result of these faults is long due to the time used in searching for the faults. Given that quick detection of faults is a sure means of improving availability and productivity in any company, we hereby propose a system of real-time diagnosis of the faults on AES-SONEL’s electric power distribution network. After an inventory of typical faults on electric power networks and the proposal of a tool for their identification, we propose a system for the detection and localization of these various failures. The implementation of the system on a Programmable Logic Controller (PLC) enables the performance of the system to be assessed.

Figure 1. Physical model of the DSS (two transformers, two HV switchgears, one air inlet and two air outlets are considered in the model). 
Table 1 . Size of objects in the model.
Figure 2. Temperature field distribution in the studied DSS. 
Table 5 . Energy-saving cooling strategy.
Investigation on the Factors Affecting the Temperature in Urban Distribution Substations and an Energy-Saving Cooling Strategy

December 2011

·

791 Reads

The different locations of the equipment in urban distribution substations (DSSs) and the location of inlet holes and outlet holes usually result in different ventilation effect, which means the power consumed by any ventilating devices present is different. In this paper the temperature field distribution in an urban distribution substation with different locations of the equipment in the substation was calculated first, then factors influencing the temperature field distribution were investigated, and the influence of the different factors was analyzed. When the distance between the apparatus and walls exceeds 3 m, the change of the temperature in the DSS is very small. Therefore considering the floor area of the DSS, 3 m is the best value of the distance between the apparatus. With the change of the environment temperature or the velocity of the ventilation fans, the maximum temperature in the DSS or apparatus will change. Hence an energy saving ventilation strategy is proposed in the paper, and an intelligent cooling control system is developed, which can modify the velocity of the ventilation fans according to the environment temperature, and thus realize energy savings.

Top-cited authors