Formation of the complex structure with 16 atoms in the orthorhombic cell,
space group Cmca (Pearson symbol oC16) was experimentally found under high
pressure in the alkali elements (K, Rb, Cs) and polyvalent elements of groups
IV (Si, Ge) and V (Bi). Intermetallic phases with this structure form under
pressure in binary Bi-based alloys (Bi-Sn, Bi-In, Bi-Pb). Stability of the Cmca
- oC16 structure is analyzed within the nearly free-electron model in the frame
of Fermi sphere - Brillouin zone interaction. A Brillouin-Jones zone formed by
a group of strong diffraction reflections close to the Fermi sphere is the
reason for reduction of crystal energy and stabilization of the structure. This
zone corresponds well to the 4 valence electrons in Si and Ge and leads to
assume a spd-hybridization for Bi. To explain the stabilization of this
structure within the same model in alkali metals, that are monovalent at
ambient conditions, a possibility of an overlap of the core and valence band
electrons at strong compression is considered. The assumption of the increase
in the number of valence electrons helps to understand sequences of complex
structures in compressed alkali elements and unusual changes in their physical
properties such as electrical resistance and superconductivity.
In Raman spectroscopy of graphite and graphene, the $D$ band at $\sim
1355$cm$^{-1}$ is used as the indication of the dirtiness of a sample. However,
our analysis suggests that the physics behind the $D$ band is closely related
to a very clear idea for describing a molecule, namely bonding and antibonding
orbitals in graphene. In this paper, we review our recent work on the mechanism
for activating the $D$ band at a graphene edge.
We study the bound state spectrum and the conditions for entering a
supercritical regime in graphene with strong intrinsic and Rashba spin-orbit
interactions within the topological insulator phase. Explicit results are
provided for a disk-shaped potential well and for the Coulomb center problem
Magnetically-doped graphene systems are potential candidates for application
in future spintronic devices. A key step is to understand the pairwise
interactions between magnetic impurities embedded in graphene that are mediated
by the graphene conduction electrons. A large number of studies have been
undertaken to investigate the indirect exchange, or RKKY, interactions in
graphene. Many of these studies report a decay rate faster than expected for a
2-dimensional material and the absence of the usual distance dependent
oscillations. In this review we summarize the techniques used to calculate the
interaction and present the key results obtained to date. The effects of more
detailed parameterisations of the magnetic impurities and graphene host are
considered, as are results obtained from ab initio calculations. Since the fast
decay of the interaction presents an obstacle to spintronic applications, we
focus in particular on the possibility of augmenting the interaction range by a
number of methods including doping, spin precession and the application of
strain.
The nucleation and growth of Fe on graphene is highly unusual.
Constantly increasing in island density with coverage is observed by
experiment which indicates the presence of strong adatom predominantly
repulsive interactions. We study Fe adatoms interactions on graphene by
first-principles calculations and showed that the interactions between
Fe adatoms consist of a short-range attraction and long-range
repulsions. By investigating the adsorption energies and diffusion
barriers for Fe adatoms on graphene, we also predict that Fe on graphene
exhibit a three-dimensional growth mode. Fe nanostructures on graphene
are also shown be stable against aggregation. The predictions from
first-principles calculations are consistent with experimental
observations.
(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 crystals have been grown by directional melt crystallization in a cold crucible. The chemical and phase compositions of the crystals have been characterized using energy dispersion X-ray spectroscopy (EDX), Raman scattering spectroscopy and transmission electron microscopy (TEM). The X-ray photoelectron emission method has been used for determining the valence state of the Ce ions. We show that directional melt crystallization produces an inhomogeneous ceria distribution along the crystal length. The as-grown crystals are mixtures of cubic and rhombohedral zirconia modifications. The rhombohedral phase has an inhomogeneous distribution along crystal length. Melt crystallization does not produce single-phase cubic (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 crystals. The formation of the phase structure in the crystals for different synthesis methods has been discussed.
Phase stability and transport properties of (ZrO2)0.91−x(Sc2O3)0.09(Yb2O3)x crystals (x = 0–0.01) have been studied before and after air annealing at 1000 °C for 400 h. The crystals have been grown by radio frequency (RF) heating in a cold crucible. The microstructure, phase composition, and electrical conductivity of the crystals have been studied using optical microscopy, X-ray diffraction, Raman spectroscopy, and impedance spectroscopy. Phase stability and degradation of ionic conductivity of the crystals upon long-term high-temperature heat treatment have been discussed. We show that the stabilization of ZrO2 co-doped with 9 mol.% Sc2O3 and 1 mol.% Yb2O3 provides transparent uniform crystals with the pseudocubic t″ phase structure having high phase stability. Crystals of this composition had the highest conductivity in the entire temperature range. Long-term high-temperature annealing of these crystals did not lead to conductivity degradation.
Class II ceramics are a material with high permittivity but low reliability of their capacitance and bias voltage due to high the temperature sensitivity of their dielectric permittivity. In this work, a BST-based (Ba0.9−xSrxCa0.1)TiO3·0.03(Bi2O3·3TiO2) (x = 0.2, 0.25, 0.3, 0.35, 0.4) composition with Y5U characteristics was investigated through compositional control to develop high-permittivity and voltage-stable ceramic compositions. Sr doping can increase the breakdown strength (Eb) but decreases the Curie temperature (Tc). The composition at x = 0.3 can obtain optimal comprehensive electrical properties, with high permittivity of 4206, low dielectric loss of ~0.009, and moderate breakdown strength (Eb) of 77.6 kV/cm, which meets Y5U specifications. Typically, a low bias-voltage dependence of capacitance is confirmed with a variation rate of 7.64% under 20 kV/cm. This strategy provides a promising candidate for high-permittivity Class II ceramic dielectrics that can be used in this field.
Recently, the need has arisen to enhance the piezoelectric properties and temperature stability of (Na,K)NbO3 system ceramics. The (0.965)(Li0.03(Na0.5K0.5)0.97)(Nb1−xSbx)O3−0.035 (Bi0.5Na0.5)0.9(Sr)0.1ZrO3 ceramics were newly manufactured using the sintering aids of CuO, B2O3, and ZnO as a function of antimony substitution, and the their crystal structure and electrical characteristics were analyzed. The grain size was apparently refined as the amount of antimony increased. The dielectric constant was enhanced and Curie temperature was decreased due to the content of the antimony substitution. The x = 0.07 sample sintered at 1060 °C presented the best electrical characteristics, which were bulk density = 4.488 g/cm3, piezoelectric constant d33 = 330 pC/N, electromechanical coupling factor kp = 0.427, mechanical coupling factor Qm = 61, and dielectric constant εr = 2521. We believe that the x = 0.07 sample is the best material for piezoelectric speakers.
In this work, a new crystal growth technique called the liquid transport method was introduced to synthesize single crystals of a topological superconductor candidate, InxSn1−xTe (IST). Crystals with the size of several millimeters were successfully synthesized, and were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy as well as electronic transport measurements. Lattice parameters decreased monotonously with the increase of indium content while hole density varied in reverse. Superconductivity with the critical temperature (Tc) around 1.6 K were observed, and the hole densities were estimated to be in the order of 1020 cm−3. The upper critical fields (Bc2) were estimated to be 0.68 T and 0.71 T for In0.04Sn0.96Te and In0.06Sn0.94Te, respectively. The results indicated that the quality of our crystals is comparable to that grown by the chemical vapor transport method, but with a relatively larger size. Our work provides a new method to grow large single crystals of IST and could help to solve the remaining open questions in a system that needs large crystals, such as a superconducting pairing mechanism, unconventional superconductivity, and so on.
In this study, the effects of decarburization annealing time on the primary recrystallization microstructure, the texture and the magnetic properties of the final product of 0.047% Nb low-temperature grain-oriented silicon steel were investigated by means of OM, EBSD and XRD. The results show that when the decarburization annealing condition is 850 °C for 5 min, the uniform fine primary recrystallization microstructure can be obtained, and the content of favorable texture {111} <112> is the highest while that of unfavorable texture {110} <112> is the lowest, which is mostly distributed near the central layer. At the same time, there are the most high-energy grain boundaries with high mobility in the primary recrystallization microstructure of the sample annealed at 850 °C for 5 min, and the ∑9 boundary has the highest percentage of grain boundaries. The samples with different decarburization annealing time were annealed at high temperature. It was found that perfect secondary recrystallization occurred after high-temperature annealing when the decarburization annealing condition was 850 °C for 5 min. The texture component was characterized by a single Goss texture, and the size of the Goss grain reached 4.6 mm. Under such annealing conditions, the sample obtained shows the optimal soft magnetic properties of B800 = 1.89 T and P1.7/50 = 1.33 w/kg.
Structural features of new mixed bismuth-containing samarium iron–aluminium borate single crystals Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) were studied using X-ray diffraction analysis based on aluminium content and temperature in the range 25–500 K. The crystals were grown using the solution-in-melt technique with Bi2Mo3O12 in a flux. The composition of the single crystals was analyzed using energy-dispersive X-ray fluorescence and energy-dispersive X-ray elemental analysis. Temperature dependencies of Sm1−xBixFe3−yAly(BO3)4 unit-cell parameters were studied. Negative thermal expansion was identified below 100 K and represented by characteristic surfaces of the thermal expansion tensor. (Sm,Bi)–O, (Sm,Bi)–(Fe,Al), (Fe,Al)–(Fe,Al), and (Fe,Al)–O interatomic distances decreased with the addition of aluminium atoms. An increase in the (Fe,Al)–(Fe,Al) intrachain bond length at low temperatures in the magnetically ordered state weakened this bond, whereas a decrease in the (Fe,Al)–(Fe,Al) interchain distance strengthened super-exchange paths between different chains. It was found that the addition of aluminium atoms influenced interatomic distances in Sm1−xBixFe3−yAly(BO3)4 much more than lowering the temperature from 293 K to 25 K. The effect of aluminium doping on magnetoelectric properties and structural symmetry of rare-earth iron borates is also discussed.
The structure of ferroelectric 0.06LiNbO3-0.94K0.5Na0.5NbO3 (KNNL6) was investigated by the neutron total scattering method in the temperature range of 290–773 K. The Rietveld analysis using the powder neutron diffraction data in the range of 290–773 K indicates transition from a two-phase (monoclinic and tetragonal) mixture at room temperature to tetragonal and cubic phases at higher temperatures. However, characterization of the local structure by the pair distribution function (PDF) method indicates that the local structure (r ≲ 10 Å) stays monoclinic over the same temperature range. Besides, the local oxygen octahedral distortion exhibits smaller changes with temperature than what is observed for the long-range average structure.
A8Tl11 (A = alkali metal) compounds have been known since the investigations of Corbett et al. in 1995 and are still a matter of current discussions as the compound includes one extra electron referred to the charge of the Tl117− cluster. Attempts to substitute this additional electron by incorporation of a halide atom succeeded in the preparation of single crystals for the lightest triel homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues also suggested the formation of analogous compounds. However, X-Ray single crystal studies on A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide substructure have not yet been performed, probably due to severe absorption combined with air and moisture sensitivity for this class of compounds. Here, we present single crystal X-Ray structure analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5, Cs5.7K2.3Tl11Cl0.6 and K4Rb4Tl11Cl0.1. It is shown that a (partial) incorporation of halide can also be indirectly determined by examination of the Tl-Tl distances, thereby the newly introduced cdd/cdav ratio allows to evaluate the degree of distortion of Tl117− clusters.
Structure, phonon, and energy storage density in Sr2+-substituted lead-free ferroelectric Ba1−xSrxTiO3 (BSTx) for compositions x = 0.1, 0.3, and 0.7 were investigated using X-ray diffraction, Raman, and ferroelectric polarization measurements as a function of temperature. The samples were tetragonal for x = 0.1 with a large c/a ratio. The tetragonal anisotropy was decreased upon increasing x and transforming to cubic for x = 0.7. The changes in structural and ferroelectric properties were found to be related to the c/a ratios. The temperature-dependent phonon spectroscopy results indicated a decrease in tetragonal–cubic phase transition temperature, Tc, upon increasing x due to a reduction in the lattice anisotropy. The intensity of ~303 cm−1 E(TO2) mode decreased gradually with temperature and finally disappeared around the tetragonal ferroelectric to cubic paraelectric phase at about 100 ℃ and 40 ℃ for x = 0.1 and 0.3, respectively. A gradual reduction in the band gap Eg of BSTx with x was evident from the analysis of UV-visible absorption spectra. The energy storage density (Udis) of the ferroelectric capacitors for x = 0.7 was ~0.20 J/cm3 with an energy storage efficiency of ~88% at an applied electric field of 104.6 kV/cm. Nearly room temperature transition temperatures TC and reasonably fair energy storage density of the BSTx capacitors were found.
The compound 0.9[KNbO3]-0.1[(BaNi1/2Nb1/2O3−δ] (KBNNO), a robust eco-friendly (lead-free) ferroelectric perovskite, has diverse applications in electronic and photonic devices. In this work, we report the dielectric, ferroelectric, and structural phase transitions behavior in the KBNNO compound using dielectric, X-ray diffraction, and Raman studies at ambient and as a function of temperature. Analyses of X-ray diffraction (XRD) data at room temperature (rtp) revealed the orthorhombic phase (sp. Gr. Amm2) of the compound with a minor secondary NiO cubic phase (sp. Gr. Fm3m). A direct optical band gap Eg of 1.66 eV was estimated at rtp from the UV–Vis reflectance spectrum analysis. Observation of non-saturated electric polarization loops were attributed to leakage current effects pertaining to oxygen vacancies in the compound. Magnetization studies showed ferromagnetism at room temperature (300 K) in this material. XRD studies on KBNNO at elevated temperatures revealed orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions at 523 and 713 K, respectively. Temperature-dependent dielectric response, being leaky, did not reveal any phase transition. Electrical conductivity data as a function of temperature obeyed Jonscher power law and satisfied the correlated barrier-hopping model, indicating dominance of the hopping conduction mechanism. Temperature-dependent Raman spectroscopic studies over a wide range of temperature (82–673 K) inferred the rhombohedral-to-orthorhombic and orthorhombic-to-tetragonal phase transitions at ~260, and 533 K, respectively. Several Raman bands were found to disappear, while a few Raman modes such as at 225, 270, 289, and 831 cm−1 exhibited discontinuity across the phase transitions at ~260 and 533 K.
C a 2.90 M e 0.10 2 + ( P O 4 ) 2 (with Me = Mn, Ni, Cu) β-tricalcium phosphate (TCP) powders were synthesized by solid-state reaction at T = 1200 °C and investigated by means of a combination of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, and luminescence spectroscopy. SEM morphological analysis showed the run products to consist of sub spherical microcrystalline aggregates, while EDS semi-quantitative analysis confirmed the nominal Ca/Me composition. The unit cell and the space group were determined by X-ray powder diffraction data showing that all the compounds crystallize in the rhombohedral R3c whitlockite-type structure, with the following unit cell constants: a = b = 10.41014(19) Å, c = 37.2984(13) Å, and cell volume V = 3500.53(15) Å3 (Mn); a = b = 10.39447(10) Å, c = 37.2901(8) Å; V = 3489.22(9) Å3 (Ni); a = b = 10.40764(8) Å, c = 37.3158(6) Å, V = 3500.48(7) Å3 (Cu). The investigation was completed with the structural refinement by the Rietveld method. The FTIR spectra are similar to those of the end-member Ca β-tricalcium phosphate (TCP), in agreement with the structure determination, and show minor band shifts of the (PO4) modes with the increasing size of the replacing Me2+ cation. Luminescence spectra and decay curves revealed significant luminescence properties for Mn and Cu phases.
Lead free piezoelectric crystals of (KxNa1-x)NbO3 (x = 0.11 and 0.17) have been grown by the modified Bridgman method. The structure and chemical composition of the obtained crystals were determined by X-ray diffraction (XRD) and electron probe microanalysis (EPMA). The domain structure evolution with increasing temperature for (KxNa1-x)NbO3 (x = 0.11 and 0.17) crystals was observed using polarized light microscopy (PLM), where distinguished changes of the domain structures were found to occur at 400 degrees C and 412 degrees C respectively, corresponding to the tetragonal to tetragonal phase transition temperatures. Dielectric measurements performed on (K0.11Na0.89)NbO3 crystals exhibited tetragonal to tetragonal and tetragonal to cubic phase transitions temperatures at 405 degrees C and 496 degrees C, respectively.
We report on the single crystal growth and physical properties of the triple-layer cobalt oxychloride Sr 4 Co 3 O 7 . 5 + x Cl 2 (x∼ 0.14) with 4-3-10 Ruddlesden–Popper type structure that was synthesized by a KCl-SrCl 2 flux method. The crystal structure was determined by means of single crystal X-ray diffraction. In this quasi two dimensional (2D) material two pyramidal CoO 5 layers and a central Co oxide layer with random oxygen deficiencies are forming the layered Co oxide blocks. These blocks are separated by Cl − -ions which are interacting via Van der Waals forces, thus, enhancing the quasi 2D nature of this compound. The soft X-ray absorption spectra at the Co-L 2 , 3 edge and O-K edge indicate that Co ions are in high spin +3 state which is in agreement with the single crystal X-ray diffraction measurements that indicate basically pyramidal oxygen environments for the Co 3 + ions in this compound.
High-quality mixed-cation lead mixed-halide (FAPbI3)0.85(MAPbBr3)0.15 perovskite films have been prepared using CH3NH3Cl additives via the solvent engineering method. The UV/Vis result shows that the addition of additives leads to enhanced absorptions. XRD and SEM characterizations suggest that compact, pinhole-free and uniform films can be obtained. This is attributable to the crystallization improvement caused by the CH3NH3Cl additives. The power conversion efficiency (PCE) of the F-doped SnO2 (FTO)/compact-TiO2/perovskite/Spiro-OMeTAD/Ag device increases from 15.3% to 16.8% with the help of CH3NH3Cl additive.
Strain-controlled low cycle fatigue experiments were carried out on the TiAl alloy Ti-45Al-4Nb-1Mo-0.15B at 400 °C and 750 °C to reveal the cyclic mechanical behavior and failure mechanism. The TiAl alloy presents stable cyclic characteristics under fatigue loading at elevated temperatures. No obvious cyclic softening or cyclic hardening was manifested during experiments. The cyclic stress–strain relationship is well described by the Ramberg–Osgood equation. The fatigue lifetime at different temperatures has a log-linear relationship with the total strain ranges. The fracture morphology indicates the main fracture mode of fatigue specimens at 400 °C is a brittle fracture, while there is a ductile fracture at 750 °C. Meanwhile, the trans-lamellar fracture is dominant for the lamellar microstructure and the percentages of the inter-lamellar fracture decreases with the strain amplitude.
Al-8Zn-2Mg-1.5Cu-0.15Sc-0.15Zr alloy with high-strength performance as well as good castability has been developed. In this study, effects of electromagnetic stirring melt treatment (ESMT) on microstructure and mechanical properties of the alloy in the squeeze casting process were investigated. The results show that solidification structure and mechanical properties are significantly improved by ESMT; compared with the conventional squeeze casting, the average grain size decreases from 112 μm without ESMT to 53 μm with ESMT. Meanwhile coarse primary Al3(Sc, Zr) particles unavoidably occurred in cases without ESMT disappear, and segregation degree of the main elements of Zn, Mg, Cu are greatly alleviated; the tensile strength increases from 590 MPa to 610 MPa, and the elongation increases from 9% to 11%. The structure refinement and homogenization should owe to uniform temperature and composition distribution by ESMT under squeeze casting with rapid solidification.
The tensile creep of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) was tested at 150–250 °C and 125–350 MPa, and the effect of Ag on the high-temperature creep of Al-Cu-Mg alloys was discussed. After the addition of Ag, the high-temperature creep performances of the alloy were significantly improved at 150 °C/300 MPa and 200 °C/(150 MPa, 175 MPa). Then, constitutive relational models of the alloy during high-temperature creep were built, and the activation energy was calculated to be 136.65 and 104.06 KJ/mol. Based on the thermal deformation mechanism maps, the high-temperature creep mechanism of the alloy was predicted. After the addition of Ag, the creep mechanism of the alloy at 150 °C transitioned from lattice diffusion control to grain boundary diffusion control. At 250 °C, the mechanism was still controlled by grain boundary slip, but as the stress index increased and after Ag was added, the alloy fractures lead to the formation of dimples, thus improving the high-temperature creep performance.
The microstructure and texture distribution of ultra-high purity Cu-0.1Al alloy target play a key role in the quality of the sputtering film. The Cu-0.1Al alloy sheets were processed by unidirectional (UR) and cross rolling (CR), and X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) technologies were adopted to observe the texture and microstructure evolution. XRD results reveal that the texture types vary greatly in UR and CR due to the change of strain path. As the strain increases to 90%, S texture occupies the most, followed by copper texture in the UR sample, while brass texture dominates the most in the CR sample. Additionally, the orientation density of texture does not increase significantly with the increase of strain but shows a downward trend both in UR and CR modes. EBSD analysis demonstrates that compared with UR, the deformation microstructure in CR is more uniform, and the layer spacing between the deformation bands is smaller, which can reduce the local-region stress concentration. After the completion of recrystallization, the difference in average grain size between the UR and CR-annealed samples is not significant, and the recrystallized grains become much finer with the increase of strain, while more equiaxed grains can be observed in CR-annealed samples.
Despite having a very similar electrocaloric (EC) coefficient, i.e., the EC temperature change divided by the applied electric field, the 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN-10PT) ceramic prepared by mechanochemical synthesis exhibits a much higher EC temperature change than the columbite-derived version, i.e., 2.37 °C at 107 °C and 115 kV/cm. The difference is due to the almost two-times-higher breakdown field of the former material, 115 kV/cm, as opposed to 57 kV/cm in the latter. While both ceramic materials have similarly high relative densities and grain sizes (>96%, ≈5 μm) and an almost correct perovskite stoichiometry, the mechanochemical synthesis contributes to a lower level of compositional deviation. The peak permittivity and saturated polarization are slightly higher and the domain structure is finer in the mechanochemically derived ceramic. The secondary phases that result from each synthesis are identified and related to different interactions of the individual materials with the electric field: an intergranular lead-silicate-based phase in the columbite-derived PMN-10PT and MgO inclusions in the mechanochemically derived ceramic.