Different input signals create their own characteristic Ca2+ fingerprints. These fingerprints are distinguished by frequency, amplitude, duration, and number of Ca2+ oscillations. Ca(2+)-binding proteins and protein kinases decode these complex Ca2+ fingerprints through conformational coupling and covalent modifications of proteins. This decoding of signals can lead to a physiological response with or without changes in gene expression. In plants, Ca(2+)-dependent protein kinases and Ca2+/calmodulin-dependent protein kinases are involved in decoding Ca2+ signals into phosphorylation signals. This review summarizes the elements of conformational coupling and molecular mechanisms of regulation of the two groups of protein kinases by Ca2+ and Ca2+/calmodulin in plants.
A revolution is occurring in our thinking about growth and development as we realize the importance of calcium ions in mediating many different processes in plants. During the last several years, there has been a dramatic unfolding of information suggesting that calcium is not simply a macronutrient. It has been found to have major metabolic and developmental control in plants. It is becoming increasingly evident that calcium ions are important intracellular messengers in plants. Recent reports indicate that calcium is involved in coupling primary stimuli such as hormones, light, and gravity to response. Since the discovery of calmo‐dulin, it has become clear that the calcium messages are often relayed by this ubiquitous calcium‐binding protein. Polarity, secretion, growth, cell division, ripening and senescence, and even gene expression are influenced by calcium and calmodulin. This review focuses on recent developments involving calcium and calmodulin as they relate to plant growth and development.
An irradiation with visible light can alter the gravitropic responsiveness of shoots and roots. This indicates that light must affect some biochemical process in plant cells which is the same as, or importantly influences, a biochemical process that regulates gravitropism. In many cases, the light receptor for this effect is the pigment phytochrome, which initiates a variety of important photomorphogenic responses in plants. Recent results suggest that both gravistimulation and phytochrome photoactivation result in altered Ca transport into and out of the affected cells. This article reviews the evidence that these Ca fluxes may be the common biochemical process which modulates both gravitropism and photomorphogenesis.
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.
The primary role of DNA polymerases is to accurately and efficiently replicate the genome in order to ensure the maintenance of the genetic information and its faithful transmission through generations. This is not a simple task considering the size of the genome and its constant exposure to endogenous and environmental DNA damaging agents. Thus, a number of DNA repair pathways operate in cells to protect the integrity of the genome. In addition to their role in replication, DNA polymerases play a central role in most of these pathways. Given the multitude and the complexity of DNA transactions that depend on DNA polymerase activity, it is not surprising that cells in all organisms contain multiple highly specialized DNA polymerases, the majority of which have only recently been discovered. Five DNA polymerases are now recognized in Escherichia coli, 8 in Saccharomyces cerevisiae, and at least 15 in humans. While polymerases in bacteria, yeast and mammalian cells have been extensively studied much less is known about their counterparts in plants. For example, the plant model organism Arabidopsis thaliana is thought to contain 12 DNA polymerases, whose functions are mostly unknown. Here we review the properties and functions of DNA polymerases focusing on yeast and mammalian cells but paying special attention to the plant enzymes and the special circumstances of replication and repair in plant cells.
Gravitropism is directed growth of a plant or plant organ in response to gravity and can be divided into the following temporal sequence: perception, transduction, and response. This article is a review of the research on the early events of gravitropism (i.e., phenomena associated with the perception and transduction phases). The two major hypotheses for graviperception are the protoplast-pressure and starch-statolith models. While most researchers support the concept of statoliths, there are suggestions that plants have multiple mechanisms of perception. Evidence supports the hypothesis that the actin cytoskeleton is involved in graviperception/transduction, but the details of these mechanisms remain elusive. A number of recent developments, such as increased use of the molecular genetic approach, magnetophoresis, and laser ablation, have facilitated research in graviperception and have allowed for refinement of the current models. In addition, the entire continuum of acceleration forces from hypo- to hyper-gravity have been useful in studying perception mechanisms. Future interdisciplinary molecular approaches and the availability of sophisticated laboratories on the International Space Station should help to develop new insights into mechanisms of gravitropism in plants.
Silicon (Si), aluminum (Al), and iron (Fe) are the three most abundant minerals in soil; however, their effects on plants differ because they are beneficial, toxic, and essential to plant growth, respectively. High accumulation of silicon in the shoots helps some plants to overcome a range of biotic and abiotic stresses. However, plants vary in their ability to take up Si from the soil and load it into the xylem and so the accumulation of silicon varies greatly between plant species. Aluminum toxicity is characterized by a rapid inhibition of root elongation but some species and even genotypes within species can tolerate Al toxicity better than others. While the mechanisms controlling this tolerance in most of the more resistant species are poorly understood, some plants are able to detoxify Al externally and/or internally by complexation with ligands or by pH changes in the rhizosphere. Iron is taken up from the soil by two efficient mechanisms called Strategy I and Strategy II, which operate in distinct phylogenic groups. Strategy I plants increase soil Fe solubility by releasing protons and reductants/chelators, such as organic acids and phenolics, into the rhizosphere, while Strategy II plants are characterized by the secretion of ferric chelating substances (phytosiderophores) coupled with a specific Fe 3+ : chelate uptake system. In this review, the molecular mechanisms underlying root response to Si, Al, and Fe are described.
Rapid population growth in the dry climate regions, arable land scarcity, and irrigation expansion limitations direct our interest to possibilities of yield increase in rainfed agriculture. Literature, however, indicates large differences between actual and potential yields, and between yields on farmers' fields and research stations. This article focuses on the determinants of these yield gaps and the windows of opportunity for yield increase on the farmer's field together with the agricultural challenges involved. The study links the conventional approach to estimate crop water requirements and dry spell effects on biomass production to a conceptual Green Water Crop Model. This model addresses the effects on crop yields of the sequential diversions of infiltrating rainfall (rainwater partitioning into runoff, plant available soil water, and deep percolation) and of different relations between nonproductive evaporation flow and productive transpiration flow, defined together as green water flow. Also, the effects of droughts and dry spells are analyzed. The model is used to demonstrate typical situations for semiarid and dry subhumid conditions (lengths of growing period (LGP) of 90 and 179 days, respectively) for maize ( Zea mays (L.)) under on-station agricultural conditions. Based on detailed water flow analysis in a 3-year on-farm case study in the Sahel on pearl millet ( Pennisetum glaucum (L.) Br.), the model is used to clarify the large scope for improved yield levels, achievable through land and water management securing that runoff losses and deep percolation are reduced and nonproductive evaporation losses minimized. The analysis indicates that poor rainwater partitioning and low plant water uptake capacity alone reduces estimated on-farm grain yields to 1/10th of the potential yields. This suggests that lack of water per se not necessarily is the primary constraint to crop growth even in drought prone areas of sub-Saharan Africa. The conclusion is that even a doubling of crop yields would be agro-hydrologically possible with relatively small manipulations of rainwater partitioning in the water balance.
Many plants contain carbohydrate-binding proteins that are commonly designated as lectins, agglutinins, or hemagglutinins. Due to the obvious differences in molecular structure, biochemical properties, and carbohydrate-binding specificity, plant lectins are usually considered a complex and heterogeneous group of proteins. Recent advances in the structural analysis of lectins and molecular cloning of lectin genes enable subdividision of plant lectins in a limited number of subgroups of structurally and evolutionary related proteins. Four major lectin families, namely, the legume lectins, the chitin-binding lectins composed of hevein domains, the type 2 ribosome-inactivating proteins, and the monocot mannose-binding lectins comprise the majority of all currently known plant lectins. In addition to these four large families the jacalin-related lectins, the amaranthin family, and the Cucurbitaceae phloem lectins are now recognized as separate subgroups. Each of the above-mentioned lectin families is discussed in detail. The description of the individual lectin families includes (1) a brief historical note, (2) an overview of the occurrence, molecular structure, and primary structure of the lectins, (3) a detailed discussion of the structure of the gene(s) and the biosynthesis and posttranslational processing of the primary translation products, (4) a summary of carbohydrate-binding specificity, (5) if relevant a note on the occurrence of lectin-related proteins, (6) a description of the three-dimensional structure of the lectins and the protomers, (7) a detailed discussion of the molecular evolution, and (8) a critical assessment of the physiological role of each group of lectins. Lectins that cannot be classified into one of the seven groups are discussed separately. General conclusions about the structure, evolution, and function of plant lectins are summarized in the concluding remarks.
Class B floral homeotic genes play a key role in specifying the identity of male reproductive organs (stamens) and petals during the development of flowers. Recently, close relatives (orthologues) of these genes have been found in diverse gymnosperms, the sister group of the flowering plants (angiosperms). The fact that such genes have not been found so far, despite considerable efforts, in mosses, ferns or algae, has been taken as evidence to suggest that B genes originated 300400 million years ago in a lineage that led to extant seed plants. Gymnosperms do not develop petals, and their male reproductive organs deviate considerably from angiosperm stamens. So what is the function of gymnosperm B genes? Recent experiments revealed that B genes from diverse extant gymnosperms are exclusively expressed in male reproductive organs (microsporophylls). At least for some of these genes it has been shown that they can partially substitute for the Arabidopsis B genes AP3 and PI in ectopic expression experiments, or even partially substitute these genes in different class B floral organ identity gene mutants. This functional complementation, however, is restricted to male organ development. These findings strongly suggest that gymnosperm and angiosperm B genes have highly related interaction partners and equivalent functions in the male organs of their different host species. It seems likely that in extant gymnosperms B genes have a function in specifying male reproductive organs. This function was probably established already in the most recent common ancestor of extant gymnosperms and angiosperms (seed plants) 300 million years ago and thus represents the ancestral function of seed plant B genes, from which other functions (e.g., in specifying petal identity) might have been derived. This suggests that the B gene function is part of an ancestral sex determination system in which B gene expression specifies male reproductive organ development, while the absence of B gene expression leads to the formation of female reproductive organs. Such a simple switch mechanism suggests that B genes might have played a central role during the origin of flowers. In the out-of-male and out-of-female hypotheses changes in B gene expression led to the origin of hermaphroditic flower precursors out of male or female gymnosperm reproductive cones, respectively. We compare these hypotheses with other recent molecular hypotheses on the origin of flowers, in which C/D and FLORICAULA/LEAFY-like genes is given a more prominent role, and we suggest how these hypotheses might be tested in the future.
Genes conferring resistance to antibiotics have been widely used as markers for the selection of transformed cells in the development of genetically modified (GM) plants. Their presence in GM plants released in the environment or used as food or feed has raised concerns over the past years regarding possible risks for human health and the environment. Although these concerns have not been supported so far by scientific evidence, the implementation of selection approaches avoiding the presence of antibiotic resistance marker genes (ARMGs) in the final GM plant is increasingly considered by GM plant developers, not only to alleviate the above-mentioned concerns, but also to circumvent technical limitations associated with the use of ARMGs. In the current paper, we present the results of a three-step analysis of selectable markers and reporter genes as well as methods aiming at developing marker-free GM plants. First, based on a comprehensive review of the scientific literature, technical developments in this domain are presented. Second, a state-of-the-art of the current use of selection approaches is provided based on publicly available information on GM plants tested in the field or authorized for commercialization. Third, in order to get more insight in the underlying practical, scientific and/or regulatory arguments supporting the choice of selection approaches, we present the results of a survey directed at relevant developers and users of GM plants. The applicability, efficiency, operational access and biosafety of the various selection approaches is discussed and considered in light of their current use, and in perspective to the long history of use of ARMGs in plant biotechnology.
This review evaluates evidence of the impact of uncomposted plant residues, composts, manures, and liquid preparations made from composts (compost extracts and teas) on pest and disease incidence and severity in agricultural and horticultural crop production. Most reports on pest control using such organic amendments relate to tropical or and climates. The majority of recent work on the use of organic amendments for prevention and control of diseases relates to container-produced plants, particularly ornamentals. However, there is growing interest in the potential for using composts to prevent and control diseases in temperate agricultural and horticultural field crops and information concerning their use and effectiveness is slowly increasing. The impact of uncomposted plant residues, composts, manures, and compost extracts/teas on pests and diseases is discussed in relation to sustainable temperate field and protected cropping systems. The factors affecting efficacy or such organic amendments in preventing and controlling pests and disease are examined and the mechanisms through which control is achieved are described.
Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition between different photoautotrophs for resources and change the succession of species, for exarnple, in phytoplankton cornmunities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that ail prirnary producing organisms (cyanobacteria, micro- and macroalgae as well as angiospenns) are capable of producing and releasing allelopathically active compounds. Although allelopathy also includes positive (stimulating) interactions, the majority of studies describe the inhibitory activity of ailelopathicaily active compounds. Different mechanisms operate depending on whether allelopathy takes place in the Open water (pelagic zone) or is Substrate associated (benthic habitats). Allelopathical interactions are especiaily common in fully aquatic species, such as submersed macrophytes or benthic algae and cyanobacteria. The prevention of shading by epiphytic and planktonic primary producers and the competition for space may be the ultimate cause for allelopathical interactions. Aquatic ailelochemicals often target multiple physiological processes. The inhibition of photosynthesis of competing primary producers seems tobe a frequent mode of action. Multiple biotic and abiotic factors determine the strength of allelopathic interactions. Bacteria associated with the donor or target organism can metabolize excreted aiielochemicals. Frequently, the impact of surplus or limiting nutrients has been shown to affect the overail production of allelochemicals and their effect on target species. Similarities and differences of ailelopathic interactions in marine and freshwater habitats as well as between the different types of producing organisms are discussed.
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion.
Plants can have constitutive leaf angles that are fixed and do not vary much among different growth environments. Several species, however, have the ability to actively adjust their leaf angles. Active leaf repositioning can be functional in avoiding detrimental environmental conditions, such as avoidance of heat stress and complete submergence, or can be, for example, utilized to maximize carbon gain by positioning the leaves relative to the incoming radiation. In recent years, major advances have been made in the understanding of the molecular mechanisms, and the underlying hormonal regulation of a particular type of leaf movement: hyponastic growth. This differential petiole growth-driven upward leaf movement is now relatively well understood in model systems such as Rumex palustris and Arabidopsis thaliana. In the first part of this review we will discuss the functional consequences of leaf orientation for plant performance. Next, we will consider hyponastic growth and describe how exploitation of natural (genetic) variation can be instrumental in studying the relevance and control of leaf positioning.
Nitrogen-fixing bacteria colonize the roots of many gramineous plants from different geographic regions. The discovery that diazotrophs can be isolated from surface-sterilized roots or other plant material led to studies of their potential to inhabit plant tissue. For some diazotrophs, their endophytic character has been documented. This review summarizes current methods to identify endophytes and to characterize the colonization of plants by endophytic bacteria. Taxonomy, occurrence, diversity, and mechanisms of plant infection of Azoarcus spp. is discussed in relation to Herbaspirillum spp. and Acetobacter diazotrophicus. Perspectives how to study their functions and metabolism in association with plants are discussed.
As a result of the rapid expansion in international travel and trade over the past few decades, invasive plants have become a problem of global proportions. Plant invasions threaten the existence of endangered species and the integrity of ecosystems, and their ravages cost national economies tens of billions of dollars every year. Strategies for managing the threats posed by plant invasions involve three main tactics: prevention, eradication, and control. The effectiveness of prevention, involving enactment of legislation to prohibit the entry and spread of noxious alien plants, has been questioned. Eradication of all but the smallest, most localized weed infestations generally is not regarded as economically feasible. Conventional weed control techniques, such as mechanical and chemical controls, because they are expensive, energy and labor intensive, and require repeated application, are impractical for managing widespread plant invasions in ecologically fragile conservation areas or low-value habitat, such as rangelands and many aquatic systems. In addition, mechanical means of control disturb the soil and may cause erosion; chemical herbicides have spurred the evolution of resistance in scores of weed species and, further, may pose risks to wildlife and human health. Because of drawbacks associated with conventional weed control methods, classical biological control, the introduction of selective exotic natural enemies to control exotic pests, increasingly is being considered and implemented as a safe, cost-effective alternative to address the invasive plant problem. Worldwide, biological weed control programs have had an overall success rate of 33 percent; success rates have been considerably higher for programs in individual countries. Benefits are several-fold. Biological control is permanent, energy-efficient, nonpolluting, and inexpensive relative to other methods. Economic returns on investment in biological weed control have been spectacular in some cases, and range from an estimated benefit/cost ratio of 2.3 to 4000 or more. Although the risks involved in biological control in general are considered unacceptable by some, biological weed control in particular has had an enviable safety record. Since establishment of the stringent standards and regulatory apparatus currently in place in the United States and elsewhere, there have been no reported cases of biological weed control causing significant harm to nontarget populations or to the environment at large.
Glyoxalases are known to play a very important role in abiotic stress tolerance. This two-step pathway detoxifies ubiquitously present cytotoxic metabolite methylglyoxal, which otherwise increases to lethal concentrations under various stress conditions. Methylglyoxal initiates stress-induced signaling cascade via reactive oxygen species, resulting in the modifications of proteins involved in various signal transduction pathways, that eventually culminates in cell death or growth arrest. The associated mechanism of tolerance conferred by over-expression of methylglyoxal-detoxifying glyoxalase pathway mainly involves lowering of methylglyoxal levels, thereby reducing subsequently induced cellular toxicity. Apart from abiotic stresses, expression of glyoxalases is affected by a wide variety of other stimuli such as biotic, chemical and hormonal treatments. Additionally, alterations in cellular milieu during plant growth and development also affect expression of glyoxalases. The multiple stress-inducible nature of these enzymes suggests a vital role for glyoxalases, associating them with plant defense mechanisms. In this context, we have summarized available transcriptome, proteome and genetic engineering- based reports in order to highlight the involvement of glyoxalases as important components of plant stress response. The role of methylglyoxal as signaling molecule is also discussed. Further, we examine the suitability of glyoxalases and methylglyoxal as potential markers for stress tolerance.
From the soil, plants take up macronutrients (calcium, magnesium, nitrogen, phosphorus, potassium, sulfur) and micronutrients (boron, chloride, cobalt, copper, iron, manganese, molybdenum, nickel, selenium, and zinc). In acidic soils, aluminum can interfere with nutrient uptake. There is a need for improved diagnostic tests for these soil-derived minerals that are inexpensive and sensitive, provide spatial and temporal information in plants and soil, and report bioavailable nutrient pools. A transgenic whole-cell biosensor detects a stimulus inside or outside a cell and causes a change in expression of a visible reporter such as green fluorescent protein, and thus can convert an invisible plant nutrient into a visible signal. Common transgenic whole-cell biosensors consist of promoter-reporter fusions, auxotrophs for target analytes that are transformed with constitutively expressed reporters, riboswitches and reporters based on Forster Resonance Energy Transfer (FRET). Here, we review transgenic plant biosensors that have been used to detect macronutrients and micronutrients. As plant-based biosensors are limited by the requirement to introduce and optimize a transgene in every genotype of interest, we also review microbial biosensor cells that have been used to measure plant or soil nutrients by co-inoculation with their respective extracts. Additionally, we review published transgenic whole-cell biosensors from other disciplines that have the potential to measure plant nutrients, with the goal of stimulating the development of these diagnostic technologies. We discuss current limitations and future improvements needed, and the long-term potential of transgenic whole-cell biosensors to inform plant physiology, improve soil nutrient management, and assist in breeding crops with improved nutrient use efficiency.
Cadmium (Cd) is an inorganic mineral in the earth's crust. Cadmium entry into the environment occurs through geogenic and anthropogenic sources. Industrial activities including mining, electroplating, iron and steel plants, and battery production employ Cd during their processes and often release Cd into the environment. When disseminated into soil, Cd can be detrimental to agro-ecosystems because it is relatively mobile and phytotoxic even at low concentrations. Cadmium's phytotoxicity is due to reductions in the rate of transpiration and photosynthesis and chlorophyll concentration resulting in retardation of plant growth, and an alteration in the nutrient concentration in roots and leaves. In response to Cd toxicity, plants have developed protective cellular mechanisms such as synthesis of phytochelatins and metallothioneins, metal compartmentalization in vacuoles, and the increased activity of antioxidant enzymes to neutralize Cd-induced toxicity. While these direct protective mechanisms can help alleviate Cd toxicity, other indirect mechanisms such as microelements (zinc, iron, manganese, and selenium) interfering with Cd uptake may decrease Cd concentration in plants. This comprehensive review encompasses the significance of Cd, portals of contamination and toxicity to plants, and implications for crop production. Various mitigation strategies with the beneficial effects of zinc, iron, manganese, and selenium in activating defence mechanisms against Cd stress are discussed. Furthermore, this review systematically identifies and summarises suitable strategies for mitigating Cd-induced toxicity in plants.
Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.
Due to limited availability of arable land and high market demand for off-season vegetables, cucurbits (plants in the family Cucurbitaceae) are continuously cultivated under unfavorable conditions in some countries. These conditions include environments that are too cold, wet, or dry, or are cool low-light winter greenhouses. Successive cropping can increase salinity, the incidence of cucurbit pests, and soilborne diseases like fusarium wilt caused by Fusarium spp. These conditions cause various physiological and pathological disorders leading to severe crop loss. Chemical pest control is expensive, not always effective, and can harm the environment. Grafting can overcome many of these problems. In fact, in many parts of the world, grafting is a routine technique in continuous cropping systems. It was first commonly used in Japan during the late 1920s by grafting watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] onto pumpkin [Cucurbita moschata Duchesne ex. Poir] rootstocks. Soon after, watermelons were grafted onto bottle gourd [Lagenaria siceraria (Molina) Standl.] rootstocks. This practice helped control declining yield due to soilborne diseases. China produces more than half the world's watermelons and cucumbers (Cucumis sativus L.), and approximately 20% of these are grafted. Use of rootstocks can enhance plant vigor through vigorous attainment of soil nutrients, avoidance of soil pathogens and tolerance of low soil temperatures, salinity, and wet-soil conditions. The type of rootstock affects cucurbit plant growth, yield, and fruit quality. Cucurbit grafting is rare in the United States, but with continued loss of quality disease-free farmland along with the phase-out of methyl bromide, the U.S. cucurbit industry sees grafting as an attractive option. Some seed companies now offer watermelon transplants grafted onto squash or bottle gourd rootstocks, and some transplant facilities offer grafting services. There have been thorough analyses of cucurbit grafting in other countries, but the literature in English is limited. This review summarizes the state of the cucurbit grafting industry on a global level, translating work published in many languages.
Reliable, precise and accurate estimates of disease severity are important for predicting yield loss, monitoring and forecasting epidemics, for assessing crop germplasm for disease resistance, and for understanding fundamental biological processes including co-evolution. Disease assessments that are inaccurate and/or imprecise might lead to faulty conclusions being drawn from the data, which in turn can lead to incorrect actions being taken in disease management decisions. Plant disease can be quantified in several different ways. This review considers plant disease severity assessment at the scale of individual plant parts or plants, and describes our current understanding of the sources and causes of assessment error, a better understanding of which is required before improvements can be targeted. The review also considers how these can be identified using various statistical tools. Indeed, great strides have been made in the last thirty years in identifying the sources of assessment error inherent to visual rating, and this review highlights ways that assessment errors can be reduced—particularly by training raters or using assessment aids. Lesion number in relation to area infected is known to influence accuracy and precision of visual estimates—the greater the number of lesions for a given area infected results in more overestimation. Furthermore, there is a widespread tendency to overestimate disease severity at low severities (
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants.
Drought is a major environmental stress threatening wheat productivity worldwide. Global climate models predict changed precipitation patterns with frequent episodes of drought. Although drought impedes wheat performance at all growth stages, it is more critical during the flowering and grain-filling phases (terminal drought) and results in substantial yield losses. The severity and duration of the stress determine the extent of the yield loss. The principal reasons for these losses are reduced rates of net photosynthesis owing to metabolic limitations—oxidative damage to chloroplasts and stomatal closure—and poor grain set and development. A comprehensive understanding of the impact of terminal drought is critical for improving drought resistance in wheat, with marker-assisted selection being increasingly employed in breeding for this resistance. The limited success of molecular breeding and physiological strategies suggests a more holistic approach, including interaction of drought with other stresses and plant morphology. Furthermore, integration of physiological traits, genetic and genomic tools, and transgenic approaches may also help to improve resistance against drought in wheat. In this review, we describe the influence of terminal drought on leaf senescence, carbon fixation, grain set and development, and explain drought resistance mechanisms. In addition, recent developments in integrated approaches such as breeding, genetics, genomics, and agronomic strategies for improving resistance against terminal drought in wheat are discussed.