Coordination Chemistry Reviews

Published by Elsevier
Online ISSN: 0010-8545
Publications
Article
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C(60)). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs.
 
Article
Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal-O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal-O2 systems.
 
Article
The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GO(ox)) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GO(ox), one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GO(ox).
 
Article
Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron's aqueous chemistry, occurs as 'rust', insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H(2)O)(6)](3+). Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting Fe(II) which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the 'rusting out' of Fe(III) and the ROS-generating autoxidation of Fe(II) so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology.
 
Article
Hydraphiles are synthetic ionophores that were designed to mimic some properties of protein channels that conduct such cations as sodium. They use macrocyclic (crown) polyethers as amphiphilic headgroups and as entry and exit portals. Their overall length is controlled by covalent links between the two headgroups (distal macrocycles) and the "central relay" unit, typically also an azacrown. The hydraphiles insert in the bilayer membranes of synthetic phospholipid vesicles or vital cells and mediate the transport of cations. The hydraphiles were intended to be models but they are functional channels. Because they are symmetric, they are non-rectifying but they show open-close behavior characteristic of natural channels. Because they are non-rectifying, when they insert into a microbial membrane, they lead to a rapid change in osmotic balance that proves fatal to bacteria.
 
Article
The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.
 
Article
Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center.
 
Article
This review covers selected surfactant ligands that undergo a change in aggregate morphology upon coordination of a metal ion, with a particular focus on coordination-induced micelle-to-vesicle transitions. The surfactants include microbially produced amphiphilic siderophores, as well as synthetic amphiphilic ligands. The mechanism of the metal-induced phase change is considered in light of the coordination chemistry of the metal ions, the nature of the ligands, and changes in molecular geometry that result from metal coordination. Of particular interest are biologically produced amphiphiles that coordinate transition metal ions and amphiphilic ligands of relevance to bioinorganic chemistry.
 
Article
Theoretical studies of proton-coupled electron transfer (PCET) reactions for model systems provide insight into fundamental concepts relevant to bioenergetics. A dynamical theoretical formulation for vibronically nonadiabatic PCET reactions has been developed. This theory enables the calculation of rates and kinetic isotope effects, as well as the pH and temperature dependences, of PCET reactions. Methods for calculating the vibronic couplings for PCET systems have also been developed and implemented. These theoretical approaches have been applied to a wide range of PCET reactions, including tyrosyl radical generation in a tyrosine-bound rhenium polypyridyl complex, phenoxyl/phenol and benzyl/toluene self-exchange reactions, and hydrogen abstraction catalyzed by the enzyme lipoxygenase. These applications have elucidated some of the key underlying physical principles of PCET reactions. The tools and concepts derived from these theoretical studies provide the foundation for future theoretical studies of PCET in more complex bioenergetic systems such as Photosystem II.
 
Article
In recent years, there has been considerable interest in studies of catalytic metal clusters in metalloproteins based on Density Functional Theory (DFT) quantum mechanics/molecular mechanics (QM/MM) hybrid methods. These methods explicitly include the perturbational influence of the surrounding protein environment on the structural/functional properties of the catalytic centers. In conjunction with recent breakthroughs in X-ray crystallography and advances in spectroscopic and biophysical studies, computational chemists are trying to understand the structural and mechanistic properties of the oxygen-evolving complex (OEC) embedded in photosystem II (PSII). Recent studies include the development of DFT-QM/MM computational models of the Mn(4)Ca cluster, responsible for photosynthetic water oxidation, and comparative quantum mechanical studies of biomimetic oxomanganese complexes. A number of computational models, varying in oxidation and protonation states and ligation of the catalytic center by amino acid residues, water, hydroxide and chloride have been characterized along the PSII catalytic cycle of water splitting. The resulting QM/MM models are consistent with available mechanistic data, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction data and extended X-ray absorption fine structure (EXAFS) measurements. Here, we review these computational efforts focused towards understanding the catalytic mechanism of water oxidation at the detailed molecular level.
 
Article
Iron-sulfur clusters are an important class of protein-bound prosthetic center that find wide utility in nature. Roles include electron transfer, enzyme catalysis, protein structure stabilization, and regulation of gene expression as transcriptional and translational sensors. In eukaryotes their biosynthesis requires a complex molecular machinery that is located within the mitochondrion, while bacteria exhibit up to three independent cluster assembly pathways. All of these paths share common themes. This review summarizes some key structural and functional properties of three central proteins dedicated to the Fe-S cluster assembly process: namely, the sulfide donor (cysteine desulfurase); iron donor (frataxin), and the iron-sulfur cluster scaffold protein (IscU/ISU).
 
Article
Biosynthesis of nitrogenase FeMoco is a highly complex process that requires, minimally, the participation of nifS, nifU, nifB, nifE, nifN, nifV, nifH, nifD and nifK gene products. Previous genetic analyses have identified the essential factors for the assembly of FeMoco; however, the exact functions of these factors and the precise sequence of events during the assembly process had remained unclear until recently, when a number of the biosynthetic intermediates of FeMoco were identified and characterized by combined biochemical, spectroscopic and structural analyses. This review gives a brief account of the recent progress toward understanding the assembly process of FeMoco, which has identified some important missing pieces of this biosynthetic puzzle.
 
Article
Theoretical studies of charge transport in deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) indicate that structure and dynamics modulate the charge transfer rates, and that different members of a structural ensemble support different charge transport mechanisms. Here, we review the influences of nucleobase geometry, electronic structure, solvent environment, and thermal conformational fluctuations on the charge transfer mechanism. We describe an emerging framework for understanding the diversity of charge transport mechanisms seen in nucleic acids.
 
Article
This review traces the development and application of the tris(thioether)borate ligands, tripodal ligands with highly polarizable thioether donors. Areas of emphasis include the basic coordination chemistry of the mid-to-late first row transition metals (Fe, Ni, Co, Cu), and the role of the thioether substituent in directing complex formation, the modeling of zinc thiolate protein active sites, high-spin organo-iron and organo-cobalt chemistry, the preparation of monovalent complexes of Fe, Co and Ni, and dioxygen and sulfur activation by monovalent nickel complexes.
 
Article
We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through a bridging aliphatic or aromatic chain. Experiments have revealed a dramatic dependence of electron transfer rates on the chemical composition of both the bridging group and the substrate. Using combined molecular dynamics simulations and electronic coupling calculations, we show that electron tunneling through perfluorinated aromatic bridges is promoted by enhanced superexchange coupling through virtual reduced states. In contrast, electron flow through aliphatic bridges occurs by hole-mediated superexchange. We have found that a small number of wire conformations with strong donor-acceptor couplings can account for the observed electron tunneling rates for sensitizer wires terminated with either ethylbenzene or adamantane. In these instances, the rate is dependent not only on electronic coupling of the donor and acceptor but also on the nuclear motion of the sensitizer wire, necessitating the calculation of average rates over the course of a molecular dynamics simulation. These calculations along with related recent findings have made it possible to analyze the results of many other sensitizer-wire experiments that in turn point to new directions in our attempts to observe reactive intermediates in the catalytic cycles of P450 and other heme enzymes.
 
Article
Although cisplatin plays a vital role in the treatment of several types of human cancer, its wide use is limited by the development of drug resistance and associated toxic side effects. Gold and gold complexes have been used to treat a wide range of ailments for many centuries. In recent years, the use of gold(III) complexes as an alternative to cisplatin treatment was proposed due to the similarities of gold and platinum. Gold(III) is isoelectronic with platinum(II) and gold(III) complexes have the same square-planar geometries as platinum(II) complexes, such as cisplatin. Although it was originally thought that gold(III) complexes might have the same molecular target as cisplatin, several lines of data indicated that proteins, rather than DNA, are targeted by gold complexes. We have recently evaluated cytotoxic and anti-cancer effects of several gold(III) dithiocarbamates against human breast cancer cells in vitro and in vivo. We have identified the tumor proteasome as an important target for gold(III) complexes and have shown that proteasome inhibition by gold(III) complexes is associated with apoptosis induction in breast cancer cells in vitro and in vivo. Furthermore, treatment of human breast tumor-bearing nude mice with a gold(III) dithiocarbamate complex was associated with tumor growth inhibition, supporting the significance of its potential development for breast cancer treatment.
 
Article
This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in enyne metathesis that trace back to vinyl carbene reactivity. Hopefully this review will stimulate further investigation into vinyl carbene reactivity which should further refine our understanding of catalytic enyne metathesis.
 
Article
The design and use of chiral dirhodium(II) paddlewheel complexes as catalysts for asymmetric metal carbenoid and metal nitrenoid reactions, and as Lewis acids have become areas of considerable interest during the past two decades. The metal carbenoid chemistry is especially versatile, encompassing transformations such as C-H insertions, cyclopropanations and ylide formation. A number of different classes of dirhodium(II) catalysts have been found to be broadly effective in this chemistry. This review will highlight that many of these catalysts have higher symmetry than the individual chiral ligands themselves. An introduction of theoretical aspects concerning the structure and symmetry of chiral dirhodium(II) complexes will be given followed by an overview of the major classes of catalysts developed to date. Some representative examples of the synthetic potential of these catalysts will also be discussed.
 
Article
Metalloenzymes efficiently catalyze some of the most important and difficult reactions in nature. For many years, coordination chemists have effectively used small molecule models to understand these systems. More recently, protein design has been shown to be an effective approach for mimicking metal coordination environments. Since the first designed proteins were reported, much success has been seen for incorporating metal sites into proteins and attaining the desired coordination environment but until recently, this has been with a lack of significant catalytic activity. Now there are examples of designed metalloproteins that, although not yet reaching the activity of native enzymes, are considerably closer. In this review, we highlight work leading up to the design of a small metalloprotein containing two metal sites, one for structural stability (HgS3) and the other a separate catalytic zinc site to mimic carbonic anhydrase activity (ZnN3O). The first section will describe previous studies that allowed for a high affinity thiolate site that binds heavy metals in a way that stabilizes three-stranded coiled coils. The second section will examine ways of preparing histidine rich environments that lead to metal based hydrolytic catalysts. We will also discuss other recent examples of the design of structural metal sites and functional metalloenzymes. Our work demonstrates that attaining the proper first coordination geometry of a metal site can lead to a significant fraction of catalytic activity, apparently independent of the type of secondary structure of the surrounding protein environment. We are now in a position to begin to meet the challenge of building a metalloenzyme systematically from the bottom-up by engineering and analyzing interactions directly around the metal site and beyond.
 
Article
Preparation of heme model complexes is a challenging subject of long-standing interest for inorganic chemists. His93Gly sperm whale myoglobin (H93G Mb) has the proximal His replaced with the much smaller non-coordinating Gly. This leaves a cavity on the proximal side of the heme into which a wide variety of exogenous ligands can be delivered. The end result is a remarkably versatile scaffold for the preparation of model heme adducts to mimic the heme iron coordination structure of native heme proteins. In this review, we first summarize the quantitative evidence for differential ligand binding affinities of the proximal and distal pockets of the H93G Mb cavity mutant that facilitates the preparation of mixed-ligand derivatives. Then we review our use of magnetic circular dichroism and electronic absorption spectroscopy to characterize nitrogen-, oxygen-, and sulfur-donor-ligated H93G Mb adducts with an emphasis on species not easily prepared by other heme model system approaches and those that serve as spectroscopic models for native heme proteins.
 
Article
This paper reviews recent electrochemical studies of the copper complexes of prion protein (PrP) and its related peptides, and correlates their redox behavior to chemical and biologically relevant reactions. Particular emphasis is placed on the difference in redox properties between copper in the octarepeat (OR) and the non-OR domains of PrP, as well as differences between the high and low copper occupancy states in the OR domain. Several discrepancies in literature concerning these differences are discussed and reconciled. The PrP copper complexes, in comparison to copper complexes of other amyloidogenic proteins/peptides, display a more diverse and richer redox chemistry. The specific protocols and caveats that need to be considered in studying the electrochemistry and redox reactions of copper complexes of PrP, PrP-derived peptides, and other related amyloidogenic proteins are summarized.
 
Article
Photosynthetic water oxidation is catalyzed by a unique Mn(4)Ca cluster in Photosystem II. The ligation environment of the Mn(4)Ca cluster optimizes the cluster's reactivity at each step in the catalytic cycle and minimizes the release of toxic, partly oxidized intermediates. However, our understanding of the cluster's ligation environment remains incomplete. Although the recent X-ray crystallographic structural models have provided great insight and are consistent with most conclusions of earlier site-directed mutagenesis studies, the ligation environments of the Mn(4)Ca cluster in the two available structural models differ in important respects. Furthermore, while these structural models and the earlier mutagenesis studies agree on the identity of most of the Mn(4)Ca cluster's amino acid ligands, they disagree on the identity of others. This review describes mutant characterizations that have been undertaken to probe the ligation environment of the Mn(4)Ca cluster, some of which have been inspired by the recent X-ray crystallographic structural models. Many of these characterizations have involved Fourier Transform Infrared (FTIR) difference spectroscopy because of the extreme sensitivity of this form of spectroscopy to the dynamic structural changes that occur during an enzyme's catalytic cycle.
 
Article
Photosynthetic reaction centers (PRCs) employ multiple-step tunneling (hopping) to separate electrons and holes that ultimately drive the chemistry required for metabolism. We recently developed hopping maps that can be used to interpret the rates and energetics of electron/hole hopping in three-site (donor-intermediate-acceptor) tunneling reactions, including those in PRCs. Here we analyze several key ET reactions in PRCs, including forward ET in the L-branch, and hopping that could involve thermodynamically uphill intermediates in the M-branch, which is ET-inactive in vivo. We also explore charge recombination reactions, which could involve hopping. Our hopping maps support the view that electron flow in PRCs involves strong electronic coupling between cofactors and reorganization energies that are among the lowest in biology (≤ 0.4 eV).
 
Article
In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5'-GG-3' sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of DNA CT to how the metal complexes are stacked in the helix. Experiments with cyclopropylamine-modified bases have revealed that charge occupation occurs at all sites along the bridge. Using Ir complexes, we have seen that the process of DNA-mediated reduction is very similar to that of DNA-mediated oxidation. Studies involving metalloproteins have, furthermore, shown that their redox activity is DNA-dependent and can be DNA-mediated. Long range DNA-mediated CT can facilitate the oxidation of DNA-bound base excision repair proteins to initiate a redox-active search for DNA lesions. DNA CT can also activate the transcription factor SoxR, triggering a cellular response to oxidative stress. Indeed, these studies show that within the cell, redox-active proteins may utilize the same chemistry as that of synthetic metal complexes in vitro, and these proteins may harness DNA-mediated CT to reduce damage to the genome and regulate cellular processes.
 
Article
Recent advances in the study of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) include structural information attained from several X-ray crystallographic (XRD) and spectroscopic (XANES and EXAFS) investigations. The possible structural features gleaned from these studies have enabled synthetic chemists to design more accurate model complexes, which in turn, offer better insight into the possible pathways used by PSII to drive photosynthetic water oxidation catalysis. Mononuclear model compounds have been used to advance the knowledge base regarding the physical properties and reactivity of high-valent (Mn(IV) or Mn(V)) complexes. Such investigations have been especially important in regard to the manganyl (Mn(IV)=O or Mn(V)≡O) species, as there are no reports, to date, of any structural characterized multinuclear model compounds that incorporate such a functionality. Dinuclear and trinuclear model compounds have also been thoroughly studied in attempts to draw further comparison to the physical properties observed in the natural system and to design systems of catalytic relevance. As the reactive center of the OEC has been shown to contain an oxo-Mn(4)Ca cluster, exact structural models necessitate a tetranuclear Mn core. The number of models that make use of Mn(4) clusters has risen substantially in recent years, and these models have provided evidence to support and refute certain mechanistic proposals. Further work is needed to adequately address the rationale for Ca (and Cl) in the OEC and to determine the sequence of events that lead to O(2) evolution.
 
Article
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
 
Article
The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed.
 
Article
Two remarkable features of many siderophores produced by oceanic bacteria are the prevalence of an α-hydroxy-carboxylic acid functionality either in the form of the amino acid β-hydroxy aspartic acid or in the form of citric acid, as well as the predominance of amphiphilic siderophores. This review will provide an overview of the photoreactivity that takes place when siderophores containing β-hydroxy aspartic acid and citric acid are coordinated to iron(III). This photoreactivity raises questions about the role of this photochemistry in microbial iron acquisition as well as upper-ocean iron cycling. The self-assembly of amphiphilic siderophores and the coordination-induced phase-change of the micelle-to-vesicle transformation will also be reviewed. The distinctive photosensitive and self-assembly properties of marine siderophores hint at possibly new microbial iron acquisition mechanisms.
 
Article
The gaseous XO molecules (X = C, N or O) bind to the heme prosthetic group of heme proteins, and thereby activate or inhibit key biological processes. These events depend on interactions of the surrounding protein with the FeXO adduct, interactions that can be monitored via the frequencies of the Fe-X and X-O bond stretching modes, νFeX and νXO. The frequencies can be determined by vibrational spectroscopy, especially resonance Raman spectroscopy. Backbonding, the donation of Fe dπ electrons to the XO π* orbitals, is a major bonding feature in all the FeXO adducts. Variations in backbonding produce negative νFeX/νXO correlations, which can be used to gauge electrostatic and H-bonding effects in the protein binding pocket. Backbonding correlations have been established for all the FeXO adducts, using porphyrins with electron donating and withdrawing substituents. However the adducts differ in their response to variations in the nature of the axial ligand, and to specific distal interactions. These variations provide differing vantages for evaluating the nature of protein-heme interactions. We review experimental studies that explore these variations, and DFT computational studies that illuminate the underlying physical mechanisms.
 
Article
Mid-to-late transition metal complexes that feature terminal, multiply bonded ligands such as oxos, imides, and nitrides have been invoked as intermediates in several catalytic transformations of synthetic and biological significance. Until about ten years ago, isolable examples of such species were virtually unknown. Over the past decade or so, numerous chemically well-defined examples of such species have been discovered. In this context, the presentreview summarizes the development of 4- and 5-coordinate Fe(E) and Co(E) species under local three-fold symmetry.
 
Article
The trace element molybdenum (Mo) is the catalytic component of important enzymes involved in global nitrogen, sulfur, and carbon metabolism in both prokaryotes and eukaryotes. With the exception of nitrogenase, Mo is complexed by a pterin compound thus forming the biologically active molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. The physiological roles and biochemical functions of many molybdoenzymes have been characterized. However, our understanding of the occurrence and evolution of Mo utilization is limited. This article focuses on recent advances in comparative genomics of Mo utilization in the three domains of life. We begin with a brief introduction of Mo transport systems, the Moco biosynthesis pathway, the role of posttranslational modifications, and enzymes that utilize Mo. Then, we proceed to recent computational and comparative genomics studies of Mo utilization, including a discussion on novel Moco-binding proteins that contain the C-terminal domain of the Moco sulfurase and that are suggested to represent a new family of molybdoenzymes. As most molybdoenzymes need additional cofactors for their catalytic activity, we also discuss interactions between Mo metabolism and other trace elements and finish with an analysis of factors that may influence evolution of Mo utilization.
 
Article
The kinetics and thermodynamics of formation of Cu(II)-superoxo (Cu-O2) complexes by the reaction of Cu(I) complexes with dioxygen (O2) and the reduction of Cu(II)-superoxo complexes to dinuclear Cu-peroxo complexes are discussed. In the former case, electron transfer from a Cu(I) complex to O2 occurs concomitantly with binding of O2 •- to the corresponding Cu(II) species. This is defined as an inner-sphere Cu(II) ion-coupled electron transfer process. Electron transfer from another Cu(I) complex to preformed Cu(II)-superoxo complexes also occurs concomitantly with binding of the the Cu(II)-peroxo species with the Cu(II) species to produce the dinuclear Cu-peroxo (Cu2-O2) complexes. The kinetics and thermodynamics of outer-sphere electron-transfer reduction of Cu2-O2 complexes are also been discussed in light of the Marcus theory of outer-sphere electron transfer.
 
Article
The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules.
 
Article
In recent years, various exogenous nitric oxide (NO) donors have been synthesized to modulate NO concentrations in cellular environments and control physiological processes that are regulated by NO. Transition metal complexes of NO (metal nitrosyls) are one such class of NO donors. Since complexes of ruthenium are in general more stable, a variety of ruthenium nitrosyls have been isolated and studied in detail in terms of their NO donating capacities. A large number of {Ru–NO}6 type of nitrosyls release NO upon exposure to UV light. Several research groups have studied their photochemistry to evaluate their potential as NO donors under the control of light. In general, the nitrosyls with non-porphyrin ligands (such as amines, Schiff bases, thiolates and ligands with carboxamide groups) readily release NO upon illumination and generate Ru(III) photoproducts. In contrast, NO photorelease from ruthenium nitrosyls derived from porphyrins remains limited due to rapid recombination. In some cases, the {Ru–NO}6 nitrosyls are photochemically converted to nitrite species (especially in water at neutral pH) while a few afford Ru(II) photoproducts. UV irradiation of selected ruthenium nitrosyls in the solid state results in NO linkage isomerism. To date, notable progress has been made in the area of nitrosyl-polymer hybrids that could be used for site-specific delivery of NO. Various strategies have also been developed to make these nitrosyls release NO under the influence of visible and/or near IR light. Although some ruthenium nitrosyls are stable under physiological conditions and are capable to NO delivery to proteins such as myoglobin and cytochrome c oxidase, so far success has been limited in using these nitrosyls as light-activated NO donors in cellular and tissue models. In this review, the effects of light on ruthenium nitrosyls derived from a wide variety of ligands (reported so far) have been summarized and their utility as NO donors have been discussed.
 
Article
Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH(-), H(2)O, SO(3) (2-), or SO(4) (2-) group, because the primary O and S isotopes ((16)O and (32)S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.
 
Article
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
 
Article
In the last ten years, a number of advances have been made in the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). Along with this new understanding of the natural system has come rapid advance in chemical models of this system. The advance of PSII model chemistry is seen most strikingly in the area of functional models where the few known systems available when this topic was last reviewed has grown into two families of model systems. In concert with this work, numerous mechanistic proposals for photosynthetic water oxidation have been proposed. Here, we review the recent efforts in functional model chemistry of the oxygen-evolving complex of photosystem II.
 
Article
Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn(4)Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.
 
Article
Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation.
 
Article
Biological redox machines require efficient transfer of electrons and holes for function. Reactions involving multiple tunneling steps, termed "hopping," often promote charge separation within and between proteins that is essential for energy storage and conversion. Here we show how semiclassical electron transfer theory can be extended to include hopping reactions: graphical representations (called hopping maps) of the dependence of calculated two-step reaction rate constants on driving force are employed to account for flow in a rhenium-labeled azurin mutant as well as in two structurally characterized redox enzymes, DNA photolyase and MauG. Analysis of the 35 Å radical propagation in ribonucleotide reductases using hopping maps shows that all tyrosines and tryptophans on the radical pathway likely are involved in function. We suggest that hopping maps can facilitate the design and construction of artificial photosynthetic systems for the production of fuels and other chemicals.
 
Article
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
 
Article
The light-driven steps in the biogenesis and repair of the inorganic core comprising the O(2)-evolving center of oxygenic photosynthesis (photosystem II water-oxidation complex, PSII-WOC) are reviewed. These steps, known collectively as photoactivation, involve the photoassembly of the free inorganic cofactors to the cofactor-depleted PSII-(apo-WOC) driven by light and produce the active O(2)-evolving core comprised of Mn(4)CaO(x)Cl(y). We focus on the functional role of the inorganic components as seen through the competition with non-native cofactors ("inorganic mutants") on water oxidation activity, the rate of the photoassembly reaction, and on structural insights gained from EPR spectroscopy of trapped intermediates formed in the initial steps of the assembly reaction. A chemical mechanism for the initial steps in photoactivation is given that is based on these data. Photoactivation experiments offer the powerful insights gained from replacement of the native cofactors, which together with the recent X-ray structural data for the resting holoenzyme provide a deeper understanding of the chemistry of water oxidation. We also review some new directions in research that photoactivation studies have inspired that look at the evolutionary history of this remarkable catalyst.
 
Article
The synthesis, structural and spectroscopic features, and reactions of acylcobalt carbonyl complexes of the type RC(O)Co(CO)4−nLn (n = 0,1,2,3) are comprehensively reviewed.
 
Article
The novel sulfur-rich cluster anion, [Cu6(S,i-MNT)6]6−, 2, is obtained from the reaction of the homocubane, [Cu8(i-MNT)6]4−, 1, and powdered sulfur in acetonitrile solution under basic conditions. Compound 2 crystallizes in the R bar 3 space group with a=33.519(5) Å, b=33.519(5) Å, c=11.748(2) Å, γ=120°, and V=11431(3) Å3. The molecule contains six trigonally coordinated copper atoms linked together into a 12 membered ring by the six sulfur atoms of the bridging sulfur-rich i-MNT ligands. Six CuI atoms are located at the vertices of a nearly regular hexagon. The mean distance between the two planes of alternating CuI atoms is 0.345(2) Å. When 2 reacts with triphenylphosphine, a sulfur atom is removed from the disulfide containing ligands to give [Cu4(i-MNT)4]4−, isolated as the [u4N]+ salt, 4. This tetranuclear species also can be synthesized directly from [Cu(CH3CN)4][PF6] and [u4N]2[i-MNT] in acetonitrile. Compound 4 crystallizes in the C2/c space group with a=38.351(6) Å, b=38.468(8) Å, c=32.685(5) Å, β=124.94(1)°, and V=39527(12) Å3. The anion reveals discrete units of four copper atoms at the vertices of a distorted tetrahedron, bound to four i-MNT groups acting as “tridentate” (μ1, μ2) ligands. The cluster anion also is found as [BzEt3N][u4N]3 [Cu4(i-MNT)4], 5. Compound 5 crystallizes in the C2/c space group with a=27.306(7) Å, b=14.127(3) Å, c=27.868(6) Å, β=121.22(2)°, and V=9193(4) Å3. In solution the tetranuclear species transforms with oxidation into the Cu8 homocubane, 1, and the paramagnetic anion [CuII(i-MNT)2]2−, isolated as the [u4N]+ salt, 3. Spectroscopic evidence, including UV–Vis and , for the cluster transformation is presented. Compound 3 crystallizes in the P21/n space group with a=10.036(1), b=16.724(2), c=14.234(1), β=91.37(9), and V=2388(0). The anion in 3 is planar with the copper atom located on the center of symmetry. Pertinent chemical shifts (ppm) and absorption maxima (nm) with extinction coefficients in parentheses are as follows: 1, 14, 20, 24, 59, 79.8, 116.5, 197.7; 404 (ϵ=86 000 M−1 cm−1), 320 (ϵ=60 000 M−1 cm−1). 2, 14, 20, 24, 59, 61.7, 118.5, 119.5, 158; 380 (ϵ=85 000 M−1 cm−1), 350 sh (ϵ=74 000 M−1 cm−1). 3, 450 (ϵ=15 000 M−1 cm−1), 350 (ϵ=80 000 M−1 cm−1), 340 sh (ϵ=43 000 M−1 cm−1), 315 sh (ϵ=25 000 M−1 cm−1). 4, 14, 20, 24, 59, 70.8, 120, 209.5; 380 (ϵ=92 000 M−1 cm−1).
 
Article
This review describes recent advances in the synthesis and structural characterization of organometallic complexes with 1,2-dichalcogenolato-1,2-dicarba-closo-dodecaborane (12) (E2C2B10H10, where E=S, Se, Te) ligands, with emphasis on the complexes that show interesting reactivity patterns.
 
Article
In recent years, we have developed a strategy to build electrically addressed molecular motors. The architecture of such compounds is centered around half-sandwich complexes of the family of pentaphenylcyclopentadienyl hydrotris(pyrazolyl)borate ruthenium(II). In this review article, we focus on the synthesis of various pentaphenylcyclopentadienyl ligands and on the peculiar reactivity of such hindered ligands in their coordination to a ruthenium(II) center. Finally, we report on the synthesis of the latest generation of fully equipped potential molecular motors. They bear ferrocene terminal electroactive groups linked to the central pentaphenylcyclopentadienyl ligand either by conjugated or insulating spacers, and are also functionalized to be anchored on various metallic or insulating surfaces in view of near-field microscopy experiments.
 
Article
The iron coordination chemistry of 3,5-di(2-pyridyl)-1,2,4-triazoles and 3,5-di(2-pyridyl)-1,2,4-triazolates is reviewed. This includes both mononuclear and dinuclear complexes, and both iron(II) and iron(III) oxidation states. The main focus is on the synthesis, structure and magnetic properties of these complexes.
 
Article
This article covers all the research work published until September 1998 about the coordination chemistry of 1,2,4-triazolo-[1,5-a]pyrimidine derivatives. The revision is mainly focused in the structural features of the compounds, obtained from single crystal X-ray diffraction. The references are classified according to the present metal atoms. These kind of ligands display a broad versatility when binding metal ions, monodentate binding through the endocyclic nitrogen atom at position 3 being however their main coordinating behaviour. Dimeric and polymeric structures are observed when a bidentate binding through N3–N4 or N3–N1, respectively, takes place. N1–O7 chelating binding mode has also been observed in a few cases. In some cases, dimers or polymers are also generated when the present auxiliary ligands are the ones that bridge the metal centres.
 
Article
1,2,4-Triazole and its derivatives have gained great attention as ligands to transition metals by the fact that they unite the coordination geometry of both pyrazoles and imidazoles, and in addition exhibit a strong and typical property of acting as bridging ligands between two metal centres. In this bridging capacity, the 1,2,4-triazole ligands show a great coordination diversity, especially when the triazole nucleus is substituted with additional donor groups. This property together with their strong σ donor properties and the relative ease of synthesis make them very appealing for the design of new polynuclear metal complexes with interesting properties. A number of X-ray structures have been evaluated in some detail in the present paper.
 
Top-cited authors
Vincenzo Balzani
  • University of Bologna
Sebastiano Campagna
  • Università degli Studi di Messina
Belser Peter
  • Université de Fribourg
Alexander von Zelewsky
  • Université de Fribourg
Glen B. Deacon
  • Monash University (Australia)