Cell Metabolism

Published by Elsevier
Print ISSN: 1550-4131
(Cell Metabolism 11, 1; Published online: December 10, 2009)The December 2009 issue of Cell Metabolism included a Letter to the Editor from Vermulst and colleagues (“On Mitochondria, Mutations, and Methodology”). The Response to this Letter was inadvertently omitted. The Response is presented here in the January issue, with our sincere apologies to all involved for the omission.
The family of mammalian Sirtuin proteins comprises seven members homologous to yeast Sir2. Here we show that SIRT2, a cytoplasmic sirtuin, is the most abundant sirtuin in adipocytes. Sirt2 expression is downregulated during preadipocyte differentiation in 3T3-L1 cells. Overexpression of SIRT2 inhibits differentiation, whereas reducing SIRT2 expression promotes adipogenesis. Both effects are accompanied by corresponding changes in the expression of PPARgamma, C/EBPalpha, and genes marking terminal adipocyte differentiation, including Glut4, aP2, and fatty acid synthase. The mechanism underlying the effects of reduced SIRT2 in 3T3-L1 adipocytes includes increased acetylation of FOXO1, with direct interaction between SIRT2 and FOXO1. This interaction enhances insulin-stimulated phosphorylation of FOXO1, which in turn regulates FOXO1 nuclear and cytosolic localization. Thus, Sirt2 acts as an important regulator of adipocyte differentiation through modulation of FOXO1 acetylation/phosphorylation and activity and may play a role in controlling adipose tissue mass and function.
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.
The 3' end of the rRNA of the small ribosomal subunit contains two extremely highly conserved dimethylated adenines. This modification and the responsible methyltransferases are present in all three domains of life, but its function has remained elusive. We have disrupted the mouse Tfb1m gene encoding a mitochondrial protein homologous to bacterial dimethyltransferases and demonstrate here that loss of TFB1M is embryonic lethal. Disruption of Tfb1m in heart leads to complete loss of adenine dimethylation of the rRNA of the small mitochondrial ribosomal subunit, impaired assembly of the mitochondrial ribosome, and abolished mitochondrial translation. In addition, we present biochemical evidence that TFB1M does not activate or repress transcription in the presence of TFB2M. Our results thus show that TFB1M is a nonredundant dimethyltransferase in mammalian mitochondria. In addition, we provide a possible explanation for the universal conservation of adenine dimethylation of rRNA by showing a critical role in ribosome maintenance.
The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nuclear and mitochondrial genomes essential for optimal assembly and function of the system. We describe the current understanding of the metabolic consequences of pathological OXPHOS defects, based on analyses of patients and of genetically engineered model systems. Understanding the metabolic consequences of OXPHOS disease is of key importance for elucidating pathogenic mechanisms, guiding diagnosis and developing therapies.
Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity.
Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a (13)C isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C. elegans, establishing the means by which worms obtain and process fatty acids. We applied this method to characterize how insulin signaling affects lipid physiology. Several long-lived mutations in the insulin receptor gene daf-2 resulted in significantly higher levels of synthesized fats in triglycerides and phospholipids. This elevation of fat synthesis was completely dependent upon daf-16/FoxO. Other long-lived alleles of daf-2 did not increase fat synthesis, however, suggesting that site-specific mutations in the insulin receptor can differentially influence longevity and metabolism, and that elevated lipid synthesis is not required for the longevity of daf-2 mutants.
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes, and increase stress resistance and longevity. SKN-1 also upregulates TORC1 pathway gene expression in a feedback loop. Rapamycin triggers a similar protective response in C. elegans and mice, but increases worm life span dependent upon SKN-1 and not DAF-16, apparently by interfering with TORC2 along with TORC1. TORC1, TORC2, and insulin/IGF-1-like signaling regulate SKN-1 activity through different mechanisms. We conclude that modulation of SKN-1/Nrf and DAF-16/FoxO may be generally important in the effects of TOR signaling in vivo and that these transcription factors mediate an opposing relationship between growth signals and longevity.
The life span of Caenorhabditis elegans is controlled by signaling between the germline and the soma. Germ cell removal extends life span by triggering the activation of the DAF-16/FOXO transcription factor in the intestine. Here we analyze microRNA function in C. elegans aging and show that the microRNA mir-71 functions to mediate the effects of germ cell loss on life span. mir-71 is required for the life span extension caused by germline removal, and overexpression of mir-71 further extends the life span of animals lacking germ cells. mir-71 functions in the nervous system to facilitate the localization and transcriptional activity of DAF-16 in the intestine. Our findings reveal a microRNA-dependent mechanism of life span regulation by the germline and indicate that signaling among the gonad, the nervous system, and the intestine coordinates the life span of the entire organism.
The unfolded protein response (UPR) allows cells to adjust the capacity of the endoplasmic reticulum (ER) to the load of ER-associated tasks. We show that activation of the Caenorhabditis elegans transcription factor DAF-16 and its human homolog FOXO3 restore secretory protein metabolism when the UPR is dysfunctional. We show that DAF-16 establishes alternative ER-associated degradation systems that degrade misfolded proteins independently of the ER stress sensor ire-1 and the ER-associated E3 ubiquitin ligase complex sel-11/sel-1. This is achieved by enabling autophagy-mediated degradation and by increasing the levels of skr-5, a component of an ER-associated ubiquitin ligase complex. These degradation systems can act together with the conserved UPR to improve ER homeostasis and ER stress resistance, beyond wild-type levels. Because there is no sensor in the ER that activates DAF-16 in response to intrinsic ER stress, natural or artificial interventions that activate DAF-16 may be useful therapeutic approaches to maintain ER homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.
Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself. We found that adding a small amount of glucose to the medium (2%) shortened the life span of C. elegans by inhibiting the activities of life span-extending transcription factors that are also inhibited by insulin signaling: the FOXO family member DAF-16 and the heat shock factor HSF-1. This effect involved the downregulation of an aquaporin glycerol channel, aqp-1. We show that changes in glycerol metabolism are likely to underlie the life span-shortening effect of glucose and that aqp-1 may act cell nonautonomously as a feedback regulator in the insulin/IGF-1-signaling pathway. Insulin downregulates similar glycerol channels in mammals, suggesting that this glucose-responsive pathway might be conserved evolutionarily. Together, these findings raise the possibility that a low-sugar diet might have beneficial effects on life span in higher organisms.
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). It is well established that PRMTs are implicated in various cellular processes, but their physiological roles remain unclear. Using nematodes with a loss-of-function mutation, we show that prmt-1, the major asymmetric arginine methyltransferase, is a positive regulator of longevity in C. elegans. This regulation is dependent on both its enzymatic activity and DAF-16/FoxO transcription factor, which is negatively regulated by AKT-mediated phosphorylation downstream of the DAF-2/insulin signaling. prmt-1 is also required for stress tolerance and fat storage but not dauer formation in daf-2 mutants. Biochemical analyses indicate that PRMT-1 methylates DAF-16, thereby blocking its phosphorylation by AKT. Disruption of PRMT-1 induces phosphorylation of DAF-16 with a concomitant reduction in the expression of longevity-related genes. Thus, we provide a mechanism by which asymmetric arginine dimethylation acts as an antiaging modification in C. elegans.
Stress response is a fundamental form of behavioral and physiological plasticity. Here we describe how serotonin (5HT) governs stress behavior by regulating DAF-2 insulin/IGF-1 receptor signaling to the DAF-16/FOXO transcription factor at the nexus of development, metabolism, immunity, and stress responses in C. elegans. Serotonin-deficient tph-1 mutants, like daf-2 mutants, exhibit DAF-16 nuclear accumulation and constitutive physiological stress states. Exogenous 5HT and fluoxetine (Prozac) prevented DAF-16 nuclear accumulation in wild-type animals under stresses. Genetic analyses imply that DAF-2 is a downstream target of 5HT signaling and that distinct serotonergic neurons act through distinct 5HT receptors to influence distinct DAF-16-mediated stress responses. We suggest that modulation of FOXO by 5HT represents an ancient feature of stress physiology and that the C. elegans is a genetically tractable model that can be used to delineate the molecular mechanisms and drug actions linking 5HT, neuroendocrine signaling, immunity, and mitochondrial function.
FoxO transcription factors control development and longevity in diverse species. Although FoxO regulation via changes in its subcellular localization is well established, little is known about how FoxO activity is regulated in the nucleus. Here, we show that the conserved C. elegans protein EAK-7 acts in parallel to the serine/threonine kinase AKT-1 to inhibit the FoxO transcription factor DAF-16. Loss of EAK-7 activity promotes diapause and longevity in a DAF-16/FoxO-dependent manner. Whereas akt-1 mutation activates DAF-16/FoxO by promoting its translocation from the cytoplasm to the nucleus, eak-7 mutation increases nuclear DAF-16/FoxO activity without influencing DAF-16/FoxO subcellular localization. Thus, EAK-7 and AKT-1 inhibit DAF-16/FoxO activity via distinct mechanisms. Our results implicate EAK-7 as a FoxO regulator and highlight the biological impact of a regulatory pathway that governs the activity of nuclear FoxO without altering its subcellular location.
Study Protocol 
Analysis of Plasma PYY 3-36 and GLP-1 7-36 amide Levels and Mean Ad Libitum Energy Intake (A-D) On each study visit, the hormone infusion was administered between t = 0 and t = 90 min. Shown are plasma PYY 3-36 levels (A) and plasma GLP-1 7-36 amide levels (B). Data are shown as mean ± SEM for 15 subjects. An ad libitum buffet meal was served immediately after the infusion in order to measure energy intake on all study days. Shown are the energy intake during the buffet meal following each infusion (C) and the reduction in energy intake during the buffet meal for each infusion versus the fasted saline infusion and also the sum of the individual effects of PYY 3-36 and GLP-1 7-36 amide in reducing energy intake (sum of PYY and GLP-1) (D). Data are shown as mean ± SEM, grouped for 15 subjects. **p < 0.01 versus fasted saline. ***p = 0.0001 versus fasted saline. Abbreviations: EI, energy intake; kJ, kilojoules; PYY, PYY 3-36 ; GLP-1, GLP-1 7-36 amide. See also Figure S1. 
Modulation of BOLD Signal across Brain ROIs by Feeding or Either Individual or Combined Gut Hormone Infusions (A-D) Subjects underwent a 90 min infusion of saline (fasted saline) as a control. They also had four further infusions: saline after a standard breakfast (A), PYY 3-36 after an overnight fast (B), GLP-1 7-36 amide after an overnight fast (C), and combined PYY 3-36 + GLP-1 7-36 amide after an overnight fast (D). During each infusion, a BOLD fMRI scan was performed, incorporating a picture processing task where images of food and nonfood were shown. The mean percent BOLD signal change when subjects viewed images of food compared with when they viewed images of nonfood is shown for each of the infusions administered as a comparison with the fasted saline infusion: *p = 0.015 for fed saline < fasted saline and p = 0.012 for PYY + GLP-1 < fasted saline. **p = 0.005 for PYY < fasted saline. Data are shown for individual ROIs (amygdala, insula, caudate, nucleus accumbens [N Acc], OFC, and putamen), combined for left and right hemispheres and grouped for 15 subjects, shown as mean ± SEM. Abbreviations: PYY, PYY 3-36 ; GLP-1, GLP-1 7-36 amide. See also Figure S2. 
Obesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY(3-36) and GLP-1(7-36 amide) to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding.
Leucine is recognized as a nutrient signal; however, the long-term in vivo consequences of leucine signaling and the role of branched-chain amino acid (BCAA) metabolism in this signaling remain unclear. To investigate these questions, we disrupted the BCATm gene, which encodes the enzyme catalyzing the first step in peripheral BCAA metabolism. BCATm(-/-) mice exhibited elevated plasma BCAAs and decreased adiposity and body weight, despite eating more food, along with increased energy expenditure, remarkable improvements in glucose and insulin tolerance, and protection from diet-induced obesity. The increased energy expenditure did not seem to be due to altered locomotor activity, uncoupling proteins, sympathetic activity, or thyroid hormones but was strongly associated with food consumption and an active futile cycle of increased protein degradation and synthesis. These observations suggest that elevated BCAAs and/or loss of BCAA catabolism in peripheral tissues play an important role in regulating insulin sensitivity and energy expenditure.
The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.
The HIF-1 transcription factor drives hypoxic gene expression changes that are thought to be adaptive for cells exposed to a reduced-oxygen environment. For example, HIF-1 induces the expression of glycolytic genes. It is presumed that increased glycolysis is necessary to produce energy when low oxygen will not support oxidative phosphorylation at the mitochondria. However, we find that while HIF-1 stimulates glycolysis, it also actively represses mitochondrial function and oxygen consumption by inducing pyruvate dehydrogenase kinase 1 (PDK1). PDK1 phosphorylates and inhibits pyruvate dehydrogenase from using pyruvate to fuel the mitochondrial TCA cycle. This causes a drop in mitochondrial oxygen consumption and results in a relative increase in intracellular oxygen tension. We show by genetic means that HIF-1-dependent block to oxygen utilization results in increased oxygen availability, decreased cell death when total oxygen is limiting, and reduced cell death in response to the hypoxic cytotoxin tirapazamine.
We identified a mutation in the Diet1 gene in a mouse strain that is resistant to hyperlipidemia and atherosclerosis. Diet1 encodes a 236 kD protein consisting of tandem low-density lipoprotein receptor and MAM (meprin-A5-protein tyrosine phosphatase mu) domains and is expressed in the enterocytes of the small intestine. Diet1-deficient mice exhibited an elevated bile acid pool size and impaired feedback regulation of hepatic Cyp7a1, which encodes the rate-limiting enzyme in bile acid synthesis. In mouse intestine and in cultured human intestinal cells, Diet1 expression levels influenced the production of fibroblast growth factor 15/19 (FGF15/19), a hormone that signals from the intestine to liver to regulate Cyp7a1. Transgenic expression of Diet1, or adenoviral-mediated Fgf15 expression, restored normal Cyp7a1 regulation in Diet-1-deficient mice. Diet1 and FGF19 proteins exhibited overlapping subcellular localization in cultured intestinal cells. These results establish Diet1 as a control point in enterohepatic bile acid signaling and lipid homeostasis.
Regulation of hepatic carbohydrate homeostasis is crucial for maintaining energy balance in the face of fluctuating nutrient availability. Here, we show that the hormone fibroblast growth factor 15/19 (FGF15/19), which is released postprandially from the small intestine, inhibits hepatic gluconeogenesis, like insulin. However, unlike insulin, which peaks in serum 15 min after feeding, FGF15/19 expression peaks approximately 45 min later, when bile acid concentrations increase in the small intestine. FGF15/19 blocks the expression of genes involved in gluconeogenesis through a mechanism involving the dephosphorylation and inactivation of the transcription factor cAMP regulatory element-binding protein (CREB). This in turn blunts expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and other genes involved in hepatic metabolism. Overexpression of PGC-1α blocks the inhibitory effect of FGF15/19 on gluconeogenic gene expression. These results demonstrate that FGF15/19 works subsequent to insulin as a postprandial regulator of hepatic carbohydrate homeostasis.
Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demonstrate that under hemodynamic stress, cardiac hypoxia activates DNM3os, a noncoding transcript that harbors the microRNA cluster miR-199a∼214, which shares PPARδ as common target. To address the significance of miR-199a∼214 induction and concomitant PPARδ repression, we performed antagomir-based silencing of both microRNAs and subjected mice to biomechanical stress to induce heart failure. Remarkably, antagomir-treated animals displayed improved cardiac function and restored mitochondrial fatty acid oxidation. Taken together, our data suggest a mechanism whereby miR-199a∼214 actively represses cardiac PPARδ expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of heart failure.
We show that mice with a targeted deficiency in the gene encoding the lipogenic transcription factor SREBP-1a are resistant to endotoxic shock and systemic inflammatory response syndrome induced by cecal ligation and puncture (CLP). When macrophages from the mutant mice were challenged with bacterial lipopolysaccharide, they failed to activate lipogenesis as well as two hallmark inflammasome functions, activation of caspase-1 and secretion of IL-1β. We show that SREBP-1a activates not only genes required for lipogenesis in macrophages but also the gene encoding Nlrp1a, which is a core inflammasome component. Thus, SREBP-1a links lipid metabolism to the innate immune response, which supports our hypothesis that SREBPs evolved to regulate cellular reactions to external challenges that range from nutrient limitation and hypoxia to toxins and pathogens.
Huntington's disease (HD) is a fatal, dominantly inherited disorder caused by polyglutamine repeat expansion in the huntingtin (htt) gene. Here, we observe that HD mice develop hypothermia associated with impaired activation of brown adipose tissue (BAT). Although sympathetic stimulation of PPARgamma coactivator 1alpha (PGC-1alpha) was intact in BAT of HD mice, uncoupling protein 1 (UCP-1) induction was blunted. In cultured cells, expression of mutant htt suppressed UCP-1 promoter activity; this was reversed by PGC-1alpha expression. HD mice showed reduced food intake and increased energy expenditure, with dysfunctional BAT mitochondria. PGC-1alpha is a known regulator of mitochondrial function; here, we document reduced expression of PGC-1alpha target genes in HD patient and mouse striatum. Mitochondria of HD mouse brain show reduced oxygen consumption rates. Finally, HD striatal neurons expressing exogenous PGC-1alpha were resistant to 3-nitropropionic acid treatment. Altered PGC-1alpha function may thus link transcription dysregulation and mitochondrial dysfunction in HD.
Exercise can improve cognitive function and has been linked to the increased expression of brain-derived neurotrophic factor (BDNF). However, the underlying molecular mechanisms driving the elevation of this neurotrophin remain unknown. Here we show that FNDC5, a previously identified muscle protein that is induced in exercise and is cleaved and secreted as irisin, is also elevated by endurance exercise in the hippocampus of mice. Neuronal Fndc5 gene expression is regulated by PGC-1α, and Pgc1a(-/-) mice show reduced Fndc5 expression in the brain. Forced expression of FNDC5 in primary cortical neurons increases Bdnf expression, whereas RNAi-mediated knockdown of FNDC5 reduces Bdnf. Importantly, peripheral delivery of FNDC5 to the liver via adenoviral vectors, resulting in elevated blood irisin, induces expression of Bdnf and other neuroprotective genes in the hippocampus. Taken together, our findings link endurance exercise and the important metabolic mediators, PGC-1α and FNDC5, with BDNF expression in the brain.
Hormonal and nutrient regulation of hepatic gluconeogenesis mainly occurs through modulation of the transcriptional coactivator PGC-1alpha. The identity of endogenous proteins and their enzymatic activities that regulate the functions and form part of PGC-1alpha complex are unknown. Here, we show that PGC-1alpha is in a multiprotein complex containing the acetyltransferase GCN5. PGC-1alpha is directly acetylated by GCN5 resulting in a transcriptionally inactive protein that relocalizes from promoter regions to nuclear foci. Adenoviral-mediated expression of GCN5 in cultured hepatocytes and in mouse liver largely represses activation of gluconeogenic enzymes and decreases hepatic glucose production. Thus, we have identified the endogenous PGC-1alpha protein complex and provided the molecular mechanism by which PGC-1alpha acetylation by GCN5 turns off the transcriptional and biological function of this metabolic coactivator. GCN5 might be a pharmacological target to regulate the activity of PGC-1alpha, providing a potential treatment for metabolic disorders in which hepatic glucose output is dysregulated.
Granuphilin is a crucial component of the docking machinery of insulin-containing vesicles to the plasma membrane. Here, we show that the granuphilin promoter is a target of SREBP-1c, a transcription factor that controls fatty acid synthesis, and MafA, a beta cell differentiation factor. Potassium-stimulated insulin secretion (KSIS) was suppressed in islets with adenoviral-mediated overexpression of granuphilin and enhanced in islets with knockdown of granuphilin (in which granuphilin had been knocked down). SREBP-1c and granuphilin were activated in islets from beta cell-specific SREBP-1c transgenic mice, as well as in several diabetic mouse models and normal islets treated with palmitate, accompanied by a corresponding reduction in insulin secretion. Knockdown- or knockout-mediated ablation of granuphilin or SREBP-1c restored KSIS in these islets. Collectively, our data provide evidence that activation of the SREBP-1c/granuphilin pathway is a potential mechanism for impaired insulin secretion in diabetes, contributing to beta cell lipotoxicity.
Dissecting the role of insulin in the complex regulation of triglyceride metabolism is necessary for understanding dyslipidemia and steatosis. Liver insulin receptor knockout (LIRKO) mice show that in the physiological context of feeding, hepatic insulin signaling is not required for the induction of mTORC1, an upstream activator of the lipogenic regulator, SREBP-1c. Feeding induces SREBP-1c mRNA in LIRKO livers, though not to the extent observed in controls. A high fructose diet also partially induces SREBP-1c and lipogenic gene expression in LIRKO livers. Insulin signaling becomes more important in the pathological context of obesity, as knockdown of the insulin receptor in ob/ob mice, a model of Type 2 diabetes, using antisense oligonucleotides, abolishes the induction of SREBP-1c and its targets by obesity and ameliorates steatosis. Thus, insulin-independent signaling pathways can partially compensate for insulin in the induction of SREBP-1c by feeding but the further induction by obesity/Type 2 diabetes is entirely dependent upon insulin.
Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted peripheral nerve FA synthesis that results in development of peripheral neuropathy. Srebf1c-null mice develop Remak bundle alterations and hypermyelination of small-caliber fibers that impair nerve function. Peripheral nerves lacking Srebf1c show decreased FA synthesis and glycolytic flux, but increased FA catabolism and mitochondrial function. These metabolic alterations are the result of local accumulation of two endogenous peroxisome proliferator-activated receptor-α (Pparα) ligands, 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine and 1-stearoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine. Treatment with a Pparα antagonist rescues the neuropathy of Srebf1c-null mice. These findings reveal the importance of peripheral nerve FA synthesis to sustain myelin structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.
Perturbations in hepatic lipid homeostasis are linked to the development of obesity-related steatohepatitis. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. However, the molecular function of lipin 1 is unclear. Herein, we demonstrate that the expression of lipin 1 is induced by peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a transcriptional coactivator controlling several key hepatic metabolic pathways. Gain-of-function and loss-of-function strategies demonstrated that lipin selectively activates a subset of PGC-1alpha target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation, while suppressing the lipogenic program and lowering circulating lipid levels. Lipin activates mitochondrial fatty acid oxidative metabolism by inducing expression of the nuclear receptor PPARalpha, a known PGC-1alpha target, and via direct physical interactions with PPARalpha and PGC-1alpha. These results identify lipin 1 as a selective physiological amplifier of the PGC-1alpha/PPARalpha-mediated control of hepatic lipid metabolism.
Recent genome-wide association studies (GWAS) have revealed strong association of hypercholesterolemia and myocardial infarction with SNPs on human chromosome 1p13.3. This locus covers three genes: SORT1, CELSR2, and PSRC1. We demonstrate that sortilin, encoded by SORT1, is an intracellular sorting receptor for apolipoprotein (apo) B100. It interacts with apoB100 in the Golgi and facilitates the formation and hepatic export of apoB100-containing lipoproteins, thereby regulating plasma low-density lipoprotein (LDL) cholesterol. Absence of sortilin in gene-targeted mice reduces secretion of lipoproteins from the liver and ameliorates hypercholesterolemia and atherosclerotic lesion formation in LDL receptor-deficient animals. In contrast, sortilin overexpression stimulates hepatic release of lipoproteins and increases plasma LDL levels. Our data have uncovered a regulatory pathway in hepatic lipoprotein export and suggest a molecular explanation for the cardiovascular risk being associated with 1p13.3.
Glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L cells promotes nutrient disposal via the incretin effect. However, the majority of L cells are localized to the distal gut, suggesting additional biological roles for GLP-1. Here, we demonstrate that GLP-1 receptor (GLP-1R) signaling controls mucosal expansion of the small bowel (SB) and colon. These actions did not require the epidermal growth factor (EGF) or intestinal epithelial insulin-like growth factor (IGF1) receptors but were absent in Glp1r(-/-) mice. Polyp number and size were increased in SB of exendin-4-treated Apc(Min/+) mice, whereas polyp number was reduced in SB and colon of Glp1r(-/-):Apc(Min/+) mice. Exendin-4 increased fibroblast growth factor 7 (Fgf7) expression in colonic polyps of Apc(Min/+) mice and failed to increase intestinal growth in mice lacking Fgf7. Exogenous exendin-4 and Fgf7 regulated an overlapping set of genes important for intestinal growth. Thus, gain and loss of GLP-1R signaling regulates gut growth and intestinal tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1(-/-) and Cox15(-/-) mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2(KO/KI) mouse. These results open new perspectives for therapy of mitochondrial disease.
Metabolic pathways are modulated in response to biological and pathobiological circumstances, through mechanisms ranging from altered protein function or trafficking to transcription and chromatin remodeling (Kelly and Scarpulla, 2004). Specific transcription factors directly bind a subset of protein-coding genes, while general transcription factors directly bind to all transcribed genes; transcriptional coactivators and corepressors are tethered to genes indirectly, through interactions with the DNA bound factors. In the effort to disentangle the circuits controlling energy homeostasis, peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), a cold-inducible coactivator of nuclear hormone receptors, holds particular interest (Puigserver and Spiegelman, 2003). Despite a plethora of supporting data, conclusive genetic proof of its function has been lacking for most organs in which PGC-1α is expressed (Lin et al., 2004). New work in this issue of Cell Metabolism sheds light on the role of PGC-1α in cardiac function (Arany et al., 2005).
Impaired activity of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α has been implicated in the pathophysiology of several neurodegenerative disorders. In this issue, Da Cruz et al. (2012) show improved muscle function, but not survival, with increased PGC-1α activity in muscle in a mouse model of amyotrophic lateral sclerosis.
A decade after its cloning, PGC-1α's role as a master regulator of mitochondrial biogenesis and gluconeogenesis is undisputed (Rodgers et al., 2008). Initially identified as a cofactor for the nuclear receptor PPARγ (Puigserver et al., 1998), PGC-1α is the founding member of a small family of coactivators (which includes PGC-1β and PRC) that are involved in the regulation of metabolism in general and mitochondrial function in particular (Rodgers et al., 2008). Recent work has shown that PGC-1α activity is controlled by an ever-increasing number of posttranslational modifications (PTMs). These PTMs are induced by multiple hormonal, metabolic, and stress signals and can be considered integrative nodes that fine-tune the activity of PGC-1α (see Figure 1). In this regard, PGC-1α can be phosphorylated on different residues by several kinases, including p38MAPK, AMPK, and Akt (Rodgers et al., 2008). Similar PTMs, however, do not necessarily have similar effects on PGC-1α. For example, phosphorylation of PGC-1α on Thr177 and Ser538 by AMPK activates PGC-1α (Jäger et al., 2007), whereas phosphorylation by Akt on Ser570 is inhibitory (Li et al., 2007) (Figure 1). PGC-1α activity is also regulated by acetylation of up to 13 lysine residues (Rodgers et al., 2005). When acetylated by GCN5 (Lerin et al., 2006), PGC-1α activity is low, whereas deacetylation by SIRT1 robustly increases its activity (Rodgers et al., 2008). In this issue of Cell Metabolism, Rodgers et al. deepen our knowledge of PGC1α regulation by finding a new modification that critically controls PGC-1α's ability to regulate the gluconeogenic gene program.
Impaired mitochondrial function has been implicated in the pathogenesis of type 2 diabetes, heart failure, and neurodegeneration as well as during aging. Studies with the PGC-1 transcriptional coactivators have demonstrated that these factors are central components of the regulatory network that controls mitochondrial function in mammalian cells. Here we describe a genome-wide coactivation assay to globally identify transcription factors and cofactors in this pathway. These analyses revealed a molecular signature of the PGC-1alpha transcriptional network and identified BAF60a (SMARCD1) as a molecular link between the SWI/SNF chromatin-remodeling complexes and hepatic lipid metabolism. Adenoviral-mediated expression of BAF60a stimulates fatty acid beta-oxidation in cultured hepatocytes and ameliorates hepatic steatosis in vivo. PGC-1alpha mediates the recruitment of BAF60a to PPARalpha-binding sites, leading to transcriptional activation of peroxisomal and mitochondrial fat-oxidation genes. These results define a role for the SWI/SNF complexes in the regulation of lipid homeostasis.
Endurance training induces the transcriptional coactivator PGC-1α in skeletal muscle, promoting mitochondrial biogenesis and skeletal muscle remodeling. In a recent issue of Cell, Ruas et al. (2012) show that resistance training regulates the splicing of a novel isoform of PGC-1α (PGC-1α4), which is sufficient to stimulate skeletal muscle hypertrophy.
Endothelial dysfunction is a central hallmark of diabetes. The transcriptional coactivator PGC-1α is a powerful regulator of metabolism, but its role in endothelial cells remains poorly understood. We show here that endothelial PGC-1α expression is high in diabetic rodents and humans and that PGC-1α powerfully blocks endothelial migration in cell culture and vasculogenesis in vivo. Mechanistically, PGC-1α induces Notch signaling, blunts activation of Rac/Akt/eNOS signaling, and renders endothelial cells unresponsive to established angiogenic factors. Transgenic overexpression of PGC-1α in the endothelium mimics multiple diabetic phenotypes, including aberrant re-endothelialization after carotid injury, blunted wound healing, and reduced blood flow recovery after hindlimb ischemia. Conversely, deletion of endothelial PGC-1α rescues the blunted wound healing and recovery from hindlimb ischemia seen in type 1 and type 2 diabetes. Endothelial PGC-1α thus potently inhibits endothelial function and angiogenesis, and induction of endothelial PGC-1α contributes to multiple aspects of vascular dysfunction in diabetes.
Exercise has been shown to be effective for treating obesity and type 2 diabetes. However, the molecular mechanisms for adaptation to exercise training are not fully understood. Endoplasmic reticulum (ER) stress has been linked to metabolic dysfunction. Here we show that the unfolded protein response (UPR), an adaptive response pathway that maintains ER homeostasis upon luminal stress, is activated in skeletal muscle during exercise and adapts skeletal muscle to exercise training. The transcriptional coactivator PGC-1α, which regulates several exercise-associated aspects of skeletal muscle function, mediates the UPR in myotubes and skeletal muscle through coactivation of ATF6α. Efficient recovery from acute exercise is compromised in ATF6α(-/-) mice. Blocking ER-stress-related cell death via deletion of CHOP partially rescues the exercise intolerance phenotype in muscle-specific PGC-1α KO mice. These findings suggest that modulation of the UPR through PGC1α represents an alternative avenue to improve skeletal muscle function and achieve metabolic benefits.
The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS.
The consumption of the Westernized diet is a major factor that contributes to the global epidemic of the metabolic syndrome and type 2 diabetes. Dietary intake of fructose, which is commonly derived from sweeteners based on sucrose or high-fructose corn syrup, was estimated to increase by 20%–40% over the last three decades (Havel, 2005). Numerous studies in humans and animal models have implicated fructose in the pathogenesis of insulin resistance and dyslipidemia, in particular hypertriglyceridemia (Havel, 2005 and Rutledge and Adeli, 2007). Fructose is absorbed by enterocytes through GLUT5, a fructose-specific hexose transporter, and reaches the liver through the portal circulation. Compared to glucose, fructose is more potent in the stimulation of de novo hepatic lipogenesis and VLDL secretion (Hellerstein et al., 1996), which subsequently impact on systemic energy metabolism and insulin sensitivity. The exact molecular pathway that mediates the effects of fructose on hepatic lipogenesis and insulin resistance remains unclear. A new study in this issue (Nagai et al., 2009) revealed the transcriptional coactivator PPARγ coactivator-1β (PGC-1β) as a missing link between fructose intake and metabolic disorders.
Skeletal muscle must perform different kinds of work, and distinct fiber types have evolved to accommodate these. Previous work had shown that the transcriptional coactivator PGC-1alpha drives the formation of type I and IIA muscle fibers, which are "slow-twitch" and highly oxidative. We show here that transgenic expression of PGC-1beta, a coactivator functionally similar to but distinct from PGC-1alpha, causes a marked induction of IIX fibers, which are oxidative but have "fast-twitch" biophysical properties. PGC-1beta coactivates the MEF2 family of transcription factors to stimulate the type IIX myosin heavy chain (MHC) promoter. PGC-1beta transgenic muscle fibers are rich in mitochondria and are highly oxidative, at least in part due to coactivation by PGC-1beta of ERRalpha and PPARalpha. Consequently, these transgenic animals can run for longer and at higher work loads than wild-type animals. Together, these data indicate that PGC-1beta drives the formation of highly oxidative fibers containing type IIX MHC.
Increasing evidence suggests that an inflammatory process promotes islet dysfunction in type 2 diabetes (Donath et al., 2009). Indeed, islets of patients with type 2 diabetes are characterized by the presence of cytokines, NF-κB activation, immune cells, β cell apoptosis, amyloid deposits, and fibrosis. This insulitis is due to a pathological activation of the innate immune system and governed by IL-1 signaling. Supporting the critical role of IL-1β, specific blockade of IL-1 activity reduces the release of numerous inflammatory cytokines and chemokines from islets exposed to metabolic stress, thereby decreasing islet inflammation, improving insulin secretion and glycaemia. Indeed, several clinical studies have shown that targeting IL-β has the potential to improve not only glycated hemoglobin levels in patients with type 2 diabetes but also to increase insulin production (Larsen et al., 2007). These proof-of-concept studies support a causal role for IL-1 driven islet inflammation in the pathogenesis of the disease.
Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1β (PGC-1β) is a transcriptional coactivator that induces hypertriglyceridemia in response to dietary fats through activating hepatic lipogenesis and lipoprotein secretion. The expression of PGC-1β is regulated by free fatty acids. Here we show that PGC-1β regulates plasma triglyceride metabolism through stimulating apolipoprotein C3 (APOC3) expression and elevating APOC3 levels in circulation. Remarkably, liver-specific knockdown of APOC3 significantly ameliorates PGC-1β-induced hypertriglyceridemia in mice. Hepatic expression of PGC-1β and APOC3 is reduced in response to acute and chronic treatments with nicotinic acid, a widely prescribed drug for lowering plasma triglycerides. Adenoviral-mediated knockdown of PGC-1β or APOC3 in the liver recapitulates the hypolipidemic effect of nicotinic acid. Proteomic analysis of hepatic PGC-1β transcriptional complex indicates that it stimulates APOC3 expression through coactivating orphan nuclear receptor ERRα and recruiting chromatin-remodeling cofactors. Together, these studies identify PGC-1β as an important regulator of the APOC3 gene cluster and reveal a mechanism through which nicotinic acid achieves its therapeutic effects.
miR-378* Targets Endogenous ESRRG and GABPA and Reduces Their Expression in Human Breast Cancer Cells (A) Sequences present in the 3 0 UTR of ESRRG targeted by miR-378* and conservation across species. The boxed sequences are complementary to the seed sequence of miR-378*. (B) Sequences present in the 3 0 UTR of GABPA targeted by miR-378* and conserved across species. The boxed sequences are complementary to the seed sequence of miR-378*. (C) Expression of miR-378* decreases luciferase reporter gene activity in COS-1 cells when linked to the targeted segment of the 3 0 UTR of ESRRG. Mutation of the seed sequence within the target sequence at position 4 (m4) abolishes the miR-378*-dependent repression. Control miR is a control miRNA mimic, and the control is empty vector. (D) Expression of miR-378* decreases luciferase reporter gene activity in COS-1 cells when linked to the targeted segment of the 3 0 UTR of GABPA. Mutation of the seed sequence within the target sequence at position 3-6 (m3-6) abolishes the miR-378*-dependent repression. (E) mRNA levels of ESRRA, ESRRG, and GABPA in BT-474 cells upon expression of miR-378* as compared to cells expressing control miRNA (measured by qRT-PCR and normalized to RPLP0 [dashed line]). (F) Protein levels of ERRa, ERRg, and GABPA in BT-474 cells upon expression of miR-378* or control miRNA as measured by western blotting. Tubulin is a loading control. (G) A miRNA inhibitor (miR-378*-I) blocks the action of endogenous miR-378* in BT-474 cells. mRNA levels of ESRRG and GABPA were measured by qRT-PCR and normalized to TUBA1A. Control-I, control hairpin inhibitor. (H) miR-378*-I blocks the action of endogenous miR-378* in BT-474 cells. Protein levels of ERRg and GABPA were measured by western blotting. RPLP0 is a loading control. (I) ERBB2 knockdown leads to elevated expression of ESRRG and GABPA in SKBr3 cells. siRNA against ERBB2 (siE) results in upregulation of ESRRG and GABPA mRNA levels as determined via relative quantitation by qRT-PCR. Results are expressed as relative expression from values obtained in response to the presence of siE normalized to values obtained with siC. Expression of control gene 18S is set at 1. For all bar graphs, data are represented as the mean ± SEM. Unpaired student's t test was used for evaluation of statistical significance. *p < 0.05, **p < 0.01, ***p < 0.001.
miR-378* Induces a Metabolic Shift in Breast Cancer Cells of Human and Mouse Origin (A) Expression of miR-378* increases BT-474 cell proliferation. (B) Increase in lactate levels upon expression of miR-378*. (C) Total cellular respiration of BT-474 cells is reduced by expression of miR-378*. (D) Total cellular respiration of BT-474 cells is reduced by expression of siESRRG. (E) Introduction of miR-378* decreases mitochondrial coupled respiration. Total respiration is broken down into coupled (black) and uncoupled (white) compo- nents. (F) Effect of expression of miR-378* on ATP levels. (G) Expression of a miR-378* inhibitor (miR-378*-I) decreases BT-474 cell proliferation. (H) Decrease in lactate levels upon expression of miR-378*-I. (I) Total cellular respiration of BT-474 cells is increased by expression of miR-378*-I. (J) The murine mammary epithelial cell line (NMuMG) and an ex vivo NMuMG tumor cell line overexpressing the Neu receptor (NT2196) were assayed for miR-378*, miR-378, and Ppargc1b expression levels by qRT-PCR and normalized to U6 or Arbp. (K) Some key genes downstream of miR-378*, as detected by qRT-PCR, are downregulated at the mRNA level in NT2196 cells as compared to NMuMG cells. Esrrg mRNA levels were detectable but too low to accurately quantitate. Arbp was used as an internal control. (L) ERRg and GABPA protein levels are decreased in NT2196 cells as compared to NMuMG cells as measured by western blotting. RPLP0 was used as a loading control. Arrow indicates band corresponding to ERRg. (M) Increase in lactate levels in NT2196 cells as compared to NMuMG cells. (N) Total cellular respiration is reduced in NT2196 cells as compared to NMuMG cells. Unpaired Student's t test was used for evaluation of statistical significance in (B), (F), (J), and (K) in which data from one representative experiment are shown. Paired Student's t test was used for evaluation of significance in (A), (C), (D), (G), (H), (I), (M), and (N) in which data from at least four independent experiments are shown. Lactate and ATP data are normalized to cell number. For all bar graphs, data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.  
Expression of miR-378* in Normal and Cancerous Breast Tissue  
Cancer cell metabolism is often characterized by a shift from an oxidative to a glycolytic bioenergetics pathway, a phenomenon known as the Warburg effect. miR-378(∗) is embedded within PPARGC1b which encodes PGC-1β, a transcriptional regulator of oxidative energy metabolism. Here we show that miR-378(∗) expression is regulated by ERBB2 and induces a metabolic shift in breast cancer cells. miR-378(∗) performs this function by inhibiting the expression of two PGC-1β partners, ERRγ and GABPA, leading to a reduction in tricarboxylic acid cycle gene expression and oxygen consumption as well as an increase in lactate production and in cell proliferation. In situ hybridization experiments show that miR-378(∗) expression correlates with progression of human breast cancer. These results identify miR-378(∗) as a molecular switch involved in the orchestration of the Warburg effect in breast cancer cells via interference with a well-integrated bioenergetics transcriptional pathway.
Complex interplay between T helper (Th) cells and macrophages contributes to the formation and progression of atherosclerotic plaques. While Th1 cytokines promote inflammatory activation of lesion macrophages, Th2 cytokines attenuate macrophage-mediated inflammation and enhance their repair functions. In spite of its biologic importance, the biochemical and molecular basis of how Th2 cytokines promote maturation of anti-inflammatory macrophages is not understood. We show here that in response to interleukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT6) and PPARgamma-coactivator-1beta (PGC-1beta) induce macrophage programs for fatty acid oxidation and mitochondrial biogenesis. Transgenic expression of PGC-1beta primes macrophages for alternative activation and strongly inhibits proinflammatory cytokine production, whereas inhibition of oxidative metabolism or RNAi-mediated knockdown of PGC-1beta attenuates this immune response. These data elucidate a molecular pathway that directly links mitochondrial oxidative metabolism to the anti-inflammatory program of macrophage activation, suggesting a potential role for metabolic therapies in treating atherogenic inflammation.
The insulin/insulin-like growth factor (IGF)-signaling pathway regulates crucial aspects of organismal biology, including carbohydrate metabolism, lipid metabolism, tissue growth, and longevity (Grewal, 2009 and Kitamura et al., 2003). As the “Chief Financial Officer” of a cell, insulin/IGF signaling gauges the environment for the availability of resources and decides whether to be sparing or aggressive with the use of these resources. It thereby regulates the balance between storage and breakdown of carbohydrates and lipids, as well as the degree to which cells grow, which is an energetically expensive process. As a consequence, altered insulin/IGF signaling is associated with a number of diseases. Reduced insulin signaling erroneously tells an organism to conserve energy in the form of glycogen and fat, contributing toward diabetes and obesity. Elevated insulin signaling spurs cell growth, contributing to cancer development (Bjornsti and Houghton, 2004).
Top-cited authors
David G Hardie
  • University of Dundee
David Mangelsdorf
  • University of Texas Southwestern Medical Center
Ralph J Deberardinis
  • University of Texas Southwestern Medical Center
Marco Sandri
  • Telethon Institute of Genetics and Medicine
Chi V Dang
  • Ludwig Institute for Cancer Research New York NY