Carbohydrate Polymers

Published by Elsevier
Print ISSN: 0144-8617
Publications
In the current study, porous chitosan aerogels doped with small amount of graphene oxide (CSGO aerogels) with high porosity (97.96-98.78%), extraordinarily high water absorption (5848-8917%) and low density (0.021-0.035gcm(-3)) were prepared and used as adsorbents for two azo dyes methyl orange (MO) and amido black 10B (AB10B). The adsorption behavior of these CSGO aerogels and some influence factors such as pH value, graphene oxide (GO) loading, concentration of pollutants, as well as adsorption kinetics were studied. Specifically, the adsorption capacity for MO is 686.89mgg(-1), the highest comparing with other publication results, and it is 573.47mgg(-1) for AB10B. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these porous CSGO aerogels will be a promising candidate for dye removal. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously.
 
Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Cereal starch amylose/amylopectin (AM/AP) is critical in functional properties for food and industrial applications. Conventional methods of AM/AP are time consuming and labor intensive making it difficult to screen the large sample sets necessary for evaluating breeding samples and investigating environmental impact on starch development. The objective was to adapt and optimize the iodine binding assay in a 96-well plate format for measurement at both λ 620nm and λ 510nm. The standard curve for amylose content was scaled to a 96-well plate format and demonstrated R(2) values of 0.999 and 0.993 for single and dual wavelengths, respectively. The plate methods were applicable over large ranges of amylose contents: high amylose maize starch at 61.7±2.3%, normal wheat starch at 29.0±0.74%, and a waxy maize starch at 1.2±0.9%. The method exhibited slightly greater amylose content values than the Concanavalin A method for normal type starches; but is consistent with cuvette scale iodine binding assays. Published by Elsevier Ltd.
 
Two polysaccharides abbreviated ANP and AAP were isolated from the young buds of Acanthopanax sciadophylloides. ANP consisted of l-arabinose, d-mannose, d-glucose and d-galactose in a ratio of ca 1.0:2.6:2.5:1.4 and its weight average molecular weight (Mw) was 1.07×10(4). AAP consisted of l-arabinose, d-galactose and 4-O-methyl-d-glucuronic acid in a ratio of ca 5:10:1, and its Mw was estimated to be 8.40×10(4). ANP was suggested to be an acetylated heteropolysaccharide, whereas AAP was speculated to be a type II arabinogalactan on the basis of structural analysis data. Both polysaccharides were found to stimulate NO production and induce the expression of cytokine mRNAs including IL-1β, IL-6, IL-10 and TNF-α on RAW264.7 cells. They also induced NF-κB activation in RAW-Blue cells. NO production and NF-κB activation by both polysaccharides were decreased by pretreatment with neutralizing anti-TLR-4 and anti-CD14 antibodies but not with anti-TLR-2, anti-SR-A, anti-CD11c, and anti-Dectin-1 antibodies. Therefore, these immunostimulating effects of ANP and AAP were suggested to be promoted by the interaction through the membrane receptors, TLR-4 and CD14. In addition to immunomodulating effects, ANP showed anti-HSV-2 effects in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test. Acidic treatments reduced WRV and caused irreversible deuteration of the pulp. However, alkaline treatments increased WRV and caused reversible deuteration of the pulp. Both deuteration and reprotonation of the deuterated pulp followed the same slow, first-order dynamics. This led us to propose that incubation of alkaline cellulosic pulp suspensions at elevated temperatures does not only lead to reduction in accessibility but also to a dynamic interconversion between accessible and inaccessible regions.
 
Fresh birch chips were treated with different concentrations of sodium hydroxide and sodium sulfide in deuterium oxide in typical kraft pulping conditions and the extent of irreversible deuteration of the chips/pulps was followed by Fourier transform infrared (FT-IR) spectroscopy. Water retention values (WRV) of pulps were measured to evaluate accessibility of cellulose. The kraft pulping with deuterium oxide led to significant proton-deuterium exchange that was not reversed when the chips/pulps were washed with water. The deuteration followed a first order dynamics with a maximum obtained in the beginning of delignification stage. Higher dosages of effective alkali resulted in a higher degree of deuteration and lower WRV. An inverse relationship between the extent of deuteration and WRV suggests that both were induced by cellulose microfibril aggregation. Results also indicate that hemicellulose dissolution plays an important role in the induction of cellulose microfibril aggregation, while lignin dissolution has less influence.
 
In this investigation, partially deacetylated cellulose acetate (DCA) thin films were prepared and modified with hydrophilic polysaccharides with the layer-by-layer (LbL) technique. As polysaccharides, chitosan (CHI) and carboxymethyl cellulose (CMC) were used. DCA thin films were manufactured by exposing spin coated cellulose acetate to potassium hydroxide solutions for various times. The deacetylation process was monitored by attenuated total reflectance-infrared spectroscopy, film thickness and static water contact angle measurements. A maximum of three bilayers was created from the alternating deposition of CHI and CMC on the DCA films under two different conditions namely constant ionic strengths and varying pH values of the CMC solutions. Precoatings of CMC at pH 2 were used as a base layer. The sequential deposition of CMC and CHI was investigated with a quartz crystal microbalance with dissipation, film thickness, static water contact angle and atomic force microscopy (AFM) measurements. The versatility and applicability of the developed functional coatings was shown by removing the multilayers by rinsing with mixtures containing HCl/NaCl. The developed LbL coatings are used for studying the fouling behavior of bovine serum albumin (BSA). Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Due to its biodegradability and renewability, a great interest has been devoted to investigating cellulose acetate in order to expand its potential applications. In addition, secondary cellulose acetate (CDA) could also be considered as a model system for strongly polar polymer system. The dynamical behavior of CDA is supposed to be governed by H-bonding and dipolar interaction network. Due to their high glass transition temperature, cellulose acetate-based systems are processed when blended with plasticizers. It is thus of utmost importance to study the miscibility and plasticizing effects of various molecules. We prepared CDA films via solvent casting method with diethyl phthalate as the plasticizer. Miscibility diagrams were established by calorimetry and thermo-mechanical (DMTA) experiments. Dynamical properties were analyzed by DMTA and broadband dielectric spectroscopy. We could identify the α-relaxation of these CDA-plasticizer systems in the frequency range from 0.06Hz to 10(6)Hz, which allowed for describing the dynamics in the so-called Williams-Landel-Ferry/Vogel-Fulcher-Tammann regime. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Acetylated retrograded starch is one of the forms of resistant starch (RS3/4). Apart from the known resistance to amylolysis, it is characterized by the capability to form viscous pastes. Properties of this type of acetates are mainly determined by the degree of substitution and raw material used for esterification. The objective of this study was to produce starch acetates with a degree of substitution DS=0.1 from native potato starch and retrograded potato starch, and to compare selected properties of the resultant preparations. Retrograded starch was produced by freezing pastes with concentrations of 1, 4, 10, 18 or 30g/100g. Starch acetates with a degree of substitution DS∼0.1 were produced from native or retrograded starch through acetylation with various doses of acetic acid anhydride (6.5-26.0cm(3)/100g of starch). The preparations produced were characterized by various properties. A positive correlation was observed between resistance to amylolysis and the number of acetyl groups at C2 and C3 the produced starch acetates.
 
Acetylated cashew gum (ACG) was synthesized and self-assembled nanoparticles were obtained through the dialysis of an organic solution (DMSO) against a non-solvent (water). The ACG was characterized by infrared spectroscopy. The degree of substitution was 2.8 as determined by NMR spectroscopy. The physicochemical properties of the self-assembled nanoparticles in aqueous media were characterized by DLS, SEM and fluorescence spectroscopy. The mean diameter of the self-assembled nanoparticles obtained was 179nm and the critical aggregation concentration (CAC) in water was 2.1×10(-3)g/L. Indomethacin (IND) was used as a hydrophobic model drug and was incorporated into the hydrophobized polysaccharide. Both loaded and unloaded nanoparticles were found to be spherical with diameters in the ranges of 70-170nm and 108-314nm (determined by SEM), respectively. Controlled drug release was observed for up to 72h. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4g/100g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis.
 
Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40g/100g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.
 
Homogeneous tritylation of cellulose in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid with triphenylmethy chloride as regents, pyridine or 1-butylimidazole (BIM) as base was investigated, and subsequent acetylation of the 6-O-functionalized products was further studied. The structure of products was analyzed by FTIR and (13)C NMR spectroscopy and base influences on the structure were discussed as well. The solution with pyridine as base underwent heterogeneous-homogeneous-heterogeneous process and the obtained trityl cellulose (TC) had organized structure with trityl group located completely at C-6 position of cellulose with maximum DStrityl of nearly 1. In the case of BIM as base, the solution was homogeneous for the whole reaction, but the highest DStrityl was about 0.22, with trityl group located not only at position 6 but also partially at position 2. Subsequent acetylation of the TC led to products with a preferred functionalization of the unprotected secondary OH-groups. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Neutral and acidic polysaccharides, named AMP40N and AMP40S respectively, were isolated and purified from the dried bulbs of Allium macrostemon Bunge. Both of them showed a single and symmetrically sharp peak, indicating they were homogeneous polysaccharides. Molecular weights of AMP40N and AMP40S were determined to be 18.2 and 105.1kDa, respectively. AMP40N was composed of arabinose and glucose, while AMP40S was composed of rhamnose, arabinose, glucose and galactose and a certain amount of uronic acid. FT-IR, periodic acid oxidation, Smith degradation, methylation and GC-MS analysis revealed that non-reducing terminal and →2,6)-Glc-(1→ existed in AMP40N and AMP40S. The glycosidic linkage of arabinose in AMP40N was →2)-Ara-(1→, whereas it was Ara-(1→ in AMP40S. AMP40S had (1→2)-linked l-rhamnose residue. Both AMP40N and AMP40S exhibited strong anti-tumor potential against human gastric carcinoma cells BGC-823, in particular, AMP40S presented significantly higher inhibitory rate of 85.94% than AMP40N of 52.63%. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Cold water-soluble (CWSP) and hot water soluble polysaccharides (HWSP) from Tinospora cordifolia stems were isolated and purified in 2.99% and 1.99% yield respectively. Complete hydrolysis followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, l-arabinose, d-xylose, d-mannose, d-galactose and d-glucose in molar ratio of 0.857, 1.106, 0.727, 0.526, 0.708 and 95.763 in CWSP and 0.697, 0.777, 2.048, 0.777, 0.292 and 95.408 in HWSP. The uronic acid content in the polysaccharide has been studied extensively using assorted approaches. It was quantitatively estimated by GLC analysis and spectrophotometric methods using carbazole, m-hydroxydiphenyl and 3,5-dimethylphenol as colorimetric reagents. GLC analyses indicated galacturonic acid content of 3.06% and 5.16% in CWSP and HWSP respectively. Estimation of uronic acid using 3,5-dimethylphenol corroborated the above analysis. The study resulted in composition of constituent monosugars of CWSP and HWSP and co-relation analysis of uronic acid content, leading to an unambiguous structural analysis.
 
The influence of the addition of native hyaluronan of different molecular weights (1.36MDa and 106kDa) on the aggregation behavior of hydrophobically modified amino acids in aqueous solution and in 0.15M NaCl was investigated using pyrene as a solubilization probe. Hyaluronan decreased the critical aggregation concentration in aqueous solution in the case of amino acids modified by a single alkyl chain whereas no change was observed in physiological solution. The aggregation of amino acids modified by two alkyl chains was insensitive to the presence of hyaluronan.
 
Cotton bleaching is traditionally carried out in strongly alkaline solution of hydrogen peroxide (H2O2) at temperatures close to the boil. Such harsh processing conditions can result in extensive water and energy consumptions as well as severe chemical damage to textiles. In this study, an activated peroxide system was established for low-temperature cotton bleaching by incorporating a bleach activator, namely N-[4-(triethylammoniomethyl)benzoyl]butyrolactam chloride (TBBC) into an aqueous H2O2 solution. Experimental results showed that the TBBC-activated peroxide system exhibited the most effective bleaching performance in a pH range of 6-8 which could be approximated by adding sodium bicarbonate (NaHCO3). The TBBC/H2O2/NaHCO3 system led to rapid bleaching of cotton at a temperature as low as 50°C. In comparison with the hot alkaline peroxide bleaching system, the TBBC/H2O2/NaHCO3 system provided cotton fabric with an equivalent degree of whiteness, higher degree of polymerization, and slightly lower water absorbency. The new activated peroxide system may provide a more environmentally benign approach to cotton bleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Soda-anthraquinone kenaf bast pulp (12.5 kappa number and 32% ISO brightness) has been bleached with multi stage peroxide bleaching process. Bleaching process was carried out in different sequences of peroxide stage without and with activator (tetraacetylethylenediamine, TAED) to about 80% ISO brightness. Full bleached pulp production with high brightness and viscosity and also, low chemical oxygen demand (COD) and no adsorbable organic halogens (AOX) in effluent are the aims of this study. The effects of temperature, retention time, chemical charges, TAED/peroxide ratio and alkalinity have been studied in order to maximize the brightness gain at the lowest viscosity loss. H(2)O(2) was activated as bleaching agent under milder conditions, such as low alkalinity or low temperature, by TAED activator. Therefore, TAED charge caused to an improvement in viscosity, pulp yield and effluent COD load. Pre-treatment with EDTA for 30min and in acidic condition gave 2-4% gain in ISO brightness.
 
Silver nanoparticles were prepared on chitin nanofiber surfaces by UV light reduction of silver ions. The chitin nanofibers could be efficient substrates to immobilize silver nanoparticles with stable dispersion states. The dispersion and the nanocomposite film with acrylic resin showed characteristic absorption property in the visible light region due to the effect of the silver nanoparticles. Silver nanoparticles endowed strong antifungal activity to chitin nanofibers. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Rhizoma alismatis (the rhizome of Alisma orientalis) polysaccharides (RAP) have been reported to have a variety of important biological activities. However, effective extraction of RAP has been an unsolved issue. In this study, we used an ultrasound method for high yield extraction of RAP and optimized the conditions using the response surface methodology (RSM). Following multiple regression analyses of the experimental results, we applied the 3-D response surface and the contour plots to determine the optimal conditions, which were found to be ultrasound treatment at 76.1°C for 75.2min, and water to material ratio at 30.1ml/g. Under such conditions, the yield was 6.90% which was much higher than traditional hot water extraction yield (3.41%). The fractionated RAPs following stepwise ethanol precipitation showed strong antioxidant activities. The results indicated that ultrasound extraction was a very effective method for the extraction of RAP and the polysaccharides could be explored as a potential antioxidant agent for use in medicine or functional food. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
In this study, we purified and characterized a polysaccharide (SMP-W1) from Salvia miltiorrhiza and investigated its anticancer and immunoregulatory potential in vitro and in vivo. The monosaccharide composition, protein content, uronic acid content, total carbohydrate content, viscosity and molecular weight of SMP-W1 were analyzed. In vitro, SMP-W1 had an antiproliferative effect on hepatocellular carcinoma H22 cells, especially at the high concentration of 400μg/ml. Simultaneously the polysaccharide SMP-W1 significantly inhibited tumor growth and increased serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in rats, as well as the secretion of TNF-α. In addition, the body weight, spleen index and thymus index in tumor-bearing mice were significantly improved by SMP-W1 treatment. Taken together, these results indicated that SMP-W1 possessed strong in vivo and in vitro anti-tumor activity and improves the immune response in tumor-bearing mice. Therefore, it could be developed as an anti-tumor agent with immunomodulatory activity.
 
Two polysaccharides isolated and purified from the mycelium (PPM) and its culture medium (PPE) of Phellinus pini using gel filtration were subjected to composition analysis and valuated for the antioxidant activity. The average molecular weights of PPM and PPE were approximately 22.0 and 38.0kDa, respectively. PPM and PPE were both neutral heteropolysaccharides consisting of mannose, galactose, and glucose with molecular ratios of 2.99:1.00:0.34 and 38.40:1.00:1.76, respectively. In vitro antioxidant assay, PPM and PPE could scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydroxyl radical, chelate ferrous ion and reduce ferric ion. The antioxidant activities of PPM were stronger than those of PPE, suggesting that PPM has significant potential as a natural antioxidant agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Purification and structural characterization of Chinese yam polysaccharide were investigated and its activities were analyzed. Results indicated that a single component polysaccharide with a molecular weight of 16,619Da was obtained after hot water extraction with sequential sevage deproteinization, HSCCC and Sephadex G-100 size-exclusion chromatography. The FTIR analysis showed that it had characteristic absorptive peaks and contained uronic acid. The methylation and GC-MS analysis showed that it comprised of glucose and galactose with a molar ratio of 1.52:1, and that it mainly contained 1,3-linked-glc, 1-linked-gal and 1,6-linked-gal glycosidic bonds. (1)H NMR and (13)C NMR spectra analysis showed that there were two α-configurations and one β-configuration, and that β-1,3-glucose, α-1-galactose, α-1,6-galactose might exist in the structure of the purified polysaccharide. The determination of the antioxidative activity showed that it could scavenge hydroxyl and superoxide radicals. The purified polysaccharide displayed a certain inhibitory activity against Escherichia coli, with a MIC of 2.5mg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Optical (KI/I2-staining, polarised) and FTIR microscopy has been used to monitor starch granule structure within wild-type (wt), GEMS-0067 and waxy-amylose-extender (wx-ae) maize mutant kernels. In the GEMS-0067 mutant containing the high amylose modifier (HAM) gene(s) plus the recessive ae gene, structural heterogeneity characteristic of the ae mutation was reduced markedly. However, enhanced variation in granule shape and size was observed distributed spatially within the kernel, which appears to be related to new heterogeneity in internal starch granule structure. In wx-ae starch mutants the ae gene led to heterogeneity of starch granule structure equivalent to that in single ae mutants, plus new structural heterogeneity coincident with novel induced variation in granule size and shape. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6)Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12MPa at pH 7 and 50°C (curing temperature) for wood to wood specimen as compared to 6.54MPa obtained with fevicol (48 to 50% w/v). Copyright © 2014 Elsevier Ltd. All rights reserved.
 
A novel in situ forming polysaccharides/polypeptide hydrogel composed of naturally derived materials for applications as adhesive sealant and hemostatic material was developed via Michael addition crosslinking, taking advantage of its mild condition. Thiol-modified chitosan (CSS) was fast in situ crosslinked by an efficient polypeptide crosslinker (EPLM) which was prepared by introducing maleimide groups onto ε-polylysine. Gelation can happen swiftly within 15-215s depending on the CSS concentration, the degree of substitution (DS) of maleimide groups, and the molar ratio of maleimide group to thiol group. Results indicated that storage modulus of the hydrogel increased dramatically with the increase of CSS concentration and DS of maleimide. The obtained adhesive hydrogel had an adhesion strength 4 times higher than that of the commercial fibrin glue. Notably, it is non-toxic to L929 cells and exhibits excellent prompt hemostatic property. Polysaccharides/polypeptide structure designed here facilitates to improve both the biocompatibility and the adhesive property.
 
The objectives of the present study is to investigate the chitosan as an adsorbent to treat rice mill wastewater under different process conditions such as agitation time (2-6min), initial pH (2.5-6.5), chitosan dose (400-800mg/l) and settling time (10-30min) in order to study the removal efficiency of chemical oxygen demand (COD) and total suspended solids (TSS). The results showed that, all process variables have significant effect on the removal efficiencies. The optimum process conditions were determined (agitation time of 4min, initial pH of 4.5, chitosan dose of 600mg/l and settling time of 20min) and showed high removal efficiencies (COD: 98% and TSS: 95%). FT-IR spectrophotometry was used to analyze and confirm the adsorption process. From the experimental data, Box-Behnken design (BBD) was used to develop the second order polynomial models with high coefficient of determination values (COD: 0.991 and TSS: 0.989).
 
Column adsorption of perchlorate by amine-crosslinked biopolymer based resin was investigated by considering the bed depth, stream flow rate and influent pH. The empty bed contact time (EBCT) increased with the growth of bed depths, meanwhile rising flow rate at constant bed depth (3.4cm) decreased the breakthrough time. It was observed that perchlorate adsorption capacity was optimum at neutral condition (pH: 6.0, 170.4mg/g), and decreased at acidic (pH: 3.0, 96.4mg/g) or alkalic (pH: 12.0, 72.8mg/g) influents. The predominant strains of the acclimated sludge for resin biological regeneration were the β-subclass of Proteobacteria. Biological regeneration of the saturated amine-crosslinked biopolymer based resin with mixed bacteria have shown its merit with regeneration and biological perchlorate destruction simultaneously, although its regeneration efficiency was only 61.2-84.1% by contrast to chemical regeneration with efficiency more than 95%. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Ordered porous zeolite/chitosan (Zel/Chi) monoliths were prepared by a unidirectional freeze-drying method, and their properties and structures were characterized by various instrumental methods. The metal ion adsorption and the drug release performance of the porous Zel/Chi monoliths were also studied. The release rate of cefalexin from drug-loaded Zel/Chi monoliths depended on the composition and porous structure of the monoliths. The metal ion adsorption capacity of the Zel/Chi monoliths was related to the concentration of the metal ions, the adsorption time and the Zel/Chi ratio. An experimentally maximum adsorption of 89mg/g was achieved for Cu(2+) ions. The Zel/Chi monoliths with adsorbed Cu(2+) ions effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol and had good recyclability. They were easily recovered by simply removing them from the reaction system and rinsing them with water. Copyright © 2014. Published by Elsevier Ltd.
 
Hyaluronan (HA)/poly (vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) composites film-forming solutions were prepared by a negatively charged HA and an oppositely charged PVA-SbQ. The rheological properties and structural characterization of HA/PVA-SbQ composites in aqueous solution were investigated. Zeta potential measurements and TEM were utilized to explore the formation of HA/PVA-SbQ complex micelles in aqueous solution. UV spectra and DLS experiments confirmed that the micelles are photo-crosslinkable. HA/PVA-SbQ composites films were prepared by a casting method. The microstructure and properties of the film were analyzed by SEM, optical transmittance, DSC, XRD and tensile testing. The crosslinked HA/PVA-SbQ composites films exhibited higher UV light shielding and visible light transparency and better mechanical and water vapor barrier properties as well as thermal stability than the uncrosslinked HA/PVA-SbQ composites films, indicating the formation of three-dimensional network structure. This work provided a good way for increasing the mechanical, thermal, water vapor barrier, and optical properties of HA materials for the packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Exploration of biomass based materials to replace conventional petroleum based ones has been a trend in recent decades. In this work, bamboo (Neosinocalamus affinis) with abundant resources was used for the first time to prepare films in the presence of cellulose. The effects of weight ratio of bamboo/cellulose on the appearances and properties of the films were investigated. It was confirmed there existed strong interactions between bamboo and cellulose, which were favorable to formation of homogeneous structure of blend films. Particularly, the presence of bamboo could improve the surface hydrophobicity, water resistance and thermal stability of blend films, and the films possessed an excellent oxygen barrier property, compared with generally used commercial packaging films. The bamboo biomass, therefore, is successfully used to create a new film material with a good application prospect in the fields of packaging, coating, and food industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
 
Top-cited authors
Rakshana Jayakumar
  • Kanchi Mamunivar Centre for Post Graduate Studies
Hiroshi Tamura
  • Kansai University
Alphons G J Voragen
  • Wageningen University & Research
Edwin R. Morris
  • University College Cork
Mike Gidley
  • The University of Queensland