BMC Evolutionary Biology

Published by Springer Nature

Online ISSN: 1471-2148

Articles


Figure 1: A stylised summary of hymenopteran relationships. Traditional suborders represented in capital letters. Terminal taxa indicate superfamilies, or those families not assigned to a superfamily. Dashed lines indicate hypothesised sister group relationships.
Figure 2: A consensus supernetwork highlighting the uncertainty of phylogenetic relationships between hymenopteran families.
Figure 3: The method of Davies et al. (2004) explained. In A taxa a and b have significantly different species richnesses (N). To detect the direction of the shift here we compare Na and Nb to N of their nearest outgroup c. As N does not differ significantly between a and c, but does between b and c, we have detected a significant downshift in species richness associated with b. B shows a more complicated scenario, where taxon c is made of two taxa d and e, which have significantly different species richnesses and they themselves need comparing to their outgroup (i.e. a + b). However, it is not possible to compare the values for Na, Nb, Nd or Ne as they are relative outgroups to one another in which we have not been able to detect the direction of the significant shift. In such circumstances, the combined N of species rich taxa (for example a and d) are compared to N of the next outgroup f. The same goes for the species poor taxa (for example b and e). In this example it is Nb + Ne which is significantly different to Nf and we have therefore detected significant downshifts in taxa b and e.
Figure 4: The extended majority rule MRC supertree of hymenopteran families from an all-in analysis. Numbers in brackets next to extant families indicate number of species. Membership of families with non-monophyletic "superfamilies" indicated as follows - Ch = Chalcidoidea, Cy = Cynipoidea, Ic = Ichneumonoidea, Pr = Proctotrupoidea. Taxa colour coded in relation to previous figures: Symphyta - green, Parasitica - red, Aculeata - blue.
Davis, R.B., S.L. Baldauf, and P.J. Mayhew. The origins of species richness in the Hymenoptera: Insights from a family-level supertree. BMC Evolutionary Biology 10: . [doi:10.1186/1471-214810-109]
  • Article
  • Full-text available

April 2010

·

363 Reads

·

·

The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification. The supertrees most supported by the underlying input trees are produced using matrix representation with compatibility (MRC) (from an all-in and a compartmentalised analysis). Whilst relationships at the tips of the tree tend to be well supported, those along the backbone of the tree (e.g. between Parasitica superfamilies) are generally not. Ten significant shifts in diversification (six positive and four negative) are found common to both MRC supertrees. The Apocrita (wasps, ants, bees) experienced a positive shift at their origin accounting for approximately 4,000 species. Within Apocrita other positive shifts include the Vespoidea (vespoid wasps/ants containing 24,000 spp.), Anthophila + Sphecidae (bees/thread-waisted wasps; 22,000 spp.), Bethylidae + Chrysididae (bethylid/cuckoo wasps; 5,200 spp.), Dryinidae (dryinid wasps; 1,100 spp.), and Proctotrupidae (proctotrupid wasps; 310 spp.). Four relatively species-poor families (Stenotritidae, Anaxyelidae, Blasticotomidae, Xyelidae) have undergone negative shifts. There are some two-way shifts in diversification where sister taxa have undergone shifts in opposite directions. Our results suggest that numerous phylogenetically distinctive radiations contribute to the richness of large clades. They also suggest that evolutionary events restricting the subsequent richness of large clades are common. Problematic phylogenetic issues in the Hymenoptera are identified, relating especially to superfamily validity (e.g. "Proctotrupoidea", "Mymarommatoidea"), and deeper apocritan relationships. Our results should stimulate new functional studies on the causes of the diversification shifts we have identified. Possible drivers highlighted for specific adaptive radiations include key anatomical innovations, the exploitation of rich host groups, and associations with angiosperms. Low richness may have evolved as a result of geographical isolation, specialised ecological niches, and habitat loss or competition.
Download
Share

Figure 1 (See legend on next page.)
Table 1 Fossil records of Solanaceae
Table 2 Supermatrix details
Table 3 Molecular age estimates
Solanaceae phylogeny. Phylogenetic relationships between major clades of Solanaceae based on a Maximum Likelihood analysis of a 1076 taxon supermatrix (ITS, waxy, ndhF, matK, psbA-trnH, trnS-G, trnL-F) with 10,672 bp of sequence data. Major clades recovered by previous phylogenetic studies [22,43,64] are labelled, as is the M Clade identified for the first time here. Clades with low bootstrap support (60-79%) are shown in pink, while strongly supported clades (boostrap support 80-100%) are in black. A. Major clades of Solanaceae. B. Relationships within Solanum.
A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): A dated 1000-tip tree

September 2013

·

1,573 Reads

The Solanaceae is a plant family of great economic importance. Despite a wealth of phylogenetic work on individual clades and a deep knowledge of particular cultivated species such as tomato and potato, a robust evolutionary framework with a dated molecular phylogeny for the family is still lacking. Here we investigate molecular divergence times for Solanaceae using a densely-sampled species-level phylogeny. We also review the fossil record of the family to derive robust calibration points, and estimate a chronogram using an uncorrelated relaxed molecular clock. Our densely-sampled phylogeny shows strong support for all previously identified clades of Solanaceae and strongly supported relationships between the major clades, particularly within Solanum. The Tomato clade is shown to be sister to section Petota, and the Regmandra clade is the first branching member of the Potato clade. The minimum age estimates for major splits within the family provided here correspond well with results from previous studies, indicating splits between tomato and potato around 8 Million years ago (Ma) with a 95% highest posterior density (HPD) 7-10 Ma, Solanum and Capsicum c. 19 Ma (95% HPD 17-21), and Solanum and Nicotiana c. 24 Ma (95% HPD 23-26). Our large time-calibrated phylogeny provides a significant step towards completing a fully sampled species-level phylogeny for Solanaceae, and provides age estimates for the whole family. The chronogram now includes 40% of known species and all but two monotypic genera, and is one of the best sampled angiosperm family phylogenies both in terms of taxon sampling and resolution published thus far. The increased resolution in the chronogram combined with the large increase in species sampling will provide much needed data for the examination of many biological questions using Solanaceae as a model system.

X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

February 2008

·

239 Reads

Carmen Tomas

·

·

·

[...]

·

Niels Morling
Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

Figure 1: The organization of the bacteriophage 7 - 11 genome. Upon cell entry, the genome likely takes a circular form, so that the two gene clusters are divergently transcribed and separated by a long intergenic region which consists of 5' and 3' ends of the genome. The two genes with special importance in transcriptional regulation - σ and anti-sigma factor genes - are marked. The groups of genes involved in DNA replication and nucleotide metabolism are also marked.
Figure 2: Comparison of the sequence logos. The first three lines show the sequence logos for respectively: i) experimentally found phiEco32 promoters 6, ii) 7-11 long motifs (Table 1), iii) 7-11 short motifs (Table 1). The sequence logos were aligned, and one bp gap was introduced in phiEco32 sequence logo, so that similarities between the specificities can be compared. The logos were constructed by enoLOGOS 24.
Figure 3: Comparison of promoter layout and temporal classification for 7-11 and phiEco32. The upper and the lower line correspond to the promoter layout for phiEco32 and 7-11 genomes, respectively. The color code for the promoter and gene temporal classes is indicated in the figure legend.
Inferring bacteriophage infection strategies from genome sequence: Analysis of bacteriophage 7-11 and related phages

February 2015

·

96 Reads

Analyzing regulation of bacteriophage gene expression historically lead to establishing major paradigms of molecular biology, and may provide important medical applications in the future. Temporal regulation of bacteriophage transcription is commonly analyzed through a labor-intensive combination of biochemical and bioinformatic approaches and macroarray measurements. We here investigate to what extent one can understand gene expression strategies of lytic phages, by directly analyzing their genomes through bioinformatic methods. We address this question on a recently sequenced lytic bacteriophage 7 - 11 that infects bacterium Salmonella enterica. We identify novel promoters for the bacteriophage-encoded σ factor, and test the predictions through homology with another bacteriophage (phiEco32) that has been experimentally characterized in detail. Interestingly, standard approach based on multiple local sequence alignment (MLSA) fails to correctly identify the promoters, but a simpler procedure that is based on pairwise alignment of intergenic regions identifies the desired motifs; we argue that such search strategy is more effective for promoters of bacteriophage-encoded σ factors that are typically well conserved but appear in low copy numbers, which we also verify on two additional bacteriophage genomes. Identifying promoters for bacteriophage encoded σ factors together with a more straightforward identification of promoters for bacterial encoded σ factor, allows clustering the genes in putative early, middle and late class, and consequently predicting the temporal regulation of bacteriophage gene expression, which we demonstrate on phage 7-11. While MLSA algorithms proved highly useful in computational analysis of transcription regulation, we here established that a simpler procedure is more successful for identifying promoters that are recognized by bacteriophage encoded σ factor/RNA polymerase. We here used this approach for predicting sequence specificity of a novel (bacteriophage encoded) σ factor, and consequently inferring phage 7-11 transcription strategy. Therefore, direct analysis of bacteriophage genome sequences is a plausible first-line approach for efficiently inferring phage transcription strategies, and may provide a wealth of information on transcription initiation by diverse σ factors/RNA polymerases.

Reifová R, Reif J, Antczak M, Nachmann MW.. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 11: 138

May 2011

·

217 Reads

Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry. Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.

Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

February 2007

·

346 Reads

Some of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear. Here we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron. Collectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time.

The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 11:132

May 2011

·

581 Reads

Stearoyl-CoA desaturases (SCDs) are key enzymes involved in de novo monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort. We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian Xenopus tropicalis we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, Scyliorhinus canicula, a representative of the oldest extant jawed vertebrate clade. Expression analysis in S. canicula shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function. We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.

Svara F, Rankin DJ.. The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 11: 130

May 2011

·

267 Reads

Antibiotic resistance represents a significant public health problem. When resistance genes are mobile, being carried on plasmids or phages, their spread can be greatly accelerated. Plasmids in particular have been implicated in the spread of antibiotic resistance genes. However, the selective pressures which favour plasmid-carried resistance genes have not been fully established. Here we address this issue with mathematical models of plasmid dynamics in response to different antibiotic treatment regimes. We show that transmission of plasmids is a key factor influencing plasmid-borne antibiotic resistance, but the dosage and interval between treatments is also important. Our results also hold when plasmids carrying the resistance gene are in competition with other plasmids that do not carry the resistance gene. By altering the interval between antibiotic treatments, and the dosage of antibiotic, we show that different treatment regimes can select for either plasmid-carried, or chromosome-carried, resistance. Our research addresses the effect of environmental variation on the evolution of plasmid-carried antibiotic resistance.

Table 3 Mixed model analysis of variance for larval traits.
Table 4 F tests and AIC values for larval traits from mixed model analyses of variance including single environmental variables as a covariate.
Map of the location of the study and the study ponds. Map of Sweden showing A) the location of the study region (square) and study ponds (black dots) in relation to geographic variation in anthropogenic acidification in 1990 and B) the study region with nine populations and their pond pHs (in brackets). The pond Nitta (*) was only used for environmental variation. (Source: Swedish Environmental Protection Agency: http://www.naturvardsverket.se/en/In-English/Start/State-of-the-environment/Acidification/.
Effects of the pH treatments on embryonic survival and larval traits for eight R. arvalis populations. Raw data mean ± SE A) embryonic survival, B) metamorphic mass, C) larval period, and D) growth rate. The source pond pH is on the x-axis, and the different pH treatments are pH 7.5 (open circles), pH 4.3 (black circles) and pH 4.0 (black triangles).
linear mixed model of embryonic survival.
Hangartner SB, Laurila A, Räsänen K.. Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient. BMC Evol Biol 11: 366

December 2011

·

192 Reads

Environmental stress can result in strong ecological and evolutionary effects on natural populations, but to what extent it drives adaptive divergence of natural populations is little explored. We used common garden experiments to study adaptive divergence in embryonic and larval fitness traits (embryonic survival, larval growth, and age and size at metamorphosis) in eight moor frog, Rana arvalis, populations inhabiting an acidification gradient (breeding pond pH 4.0 to 7.5) in southwestern Sweden. Embryos were raised until hatching at three (pH 4.0, 4.3 and 7.5) and larvae until metamorphosis at two (pH 4.3 and 7.5) pH treatments. To get insight into the putative selective agents along this environmental gradient, we measured relevant abiotic and biotic environmental variables from each breeding pond, and used linear models to test for phenotype-environment correlations. We found that acid origin populations had higher embryonic and larval acid tolerance (survival and larval period were less negatively affected by low pH), higher larval growth but slower larval development rates, and metamorphosed at a larger size. The phenotype-environment correlations revealed that divergence in embryonic acid tolerance and metamorphic size correlated most strongly with breeding pond pH, whereas divergence in larval period and larval growth correlated most strongly with latitude and predator density, respectively. Our results suggest that R. arvalis has diverged in response to pH mediated selection along this acidification gradient. However, as latitude and pH were closely spatially correlated in this study, further studies are needed to disentangle the specific agents of natural selection along acidification gradients. Our study highlights the need to consider the multiple interacting selective forces that drive adaptive divergence of natural populations along environmental stress gradients.

RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - A species with color-based sexual selection and 11 visual-opsin genes

March 2011

·

503 Reads

PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for > 85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-λmax assignments for all photoreceptor types in the cone mosaic.

Table 1 Mutations in the Italian Bos primigenius mtDNA genome compared to the Bovine Reference Sequence (BRS) [31]
Table 2 Haplogroups age estimation
Geographical distribution of mtDNA major clades. Mitochondrial D-loop sequences in ancient aurochen are reported as green branches on the phylogenies, with the number of separate individuals indicated, along with the current lineage nomenclature (P, E and T). Complete mtDNA genomes in modern cattle breeds are reported as blue branches (lineages T, Q and R) and similarly numbered. The phylogenetic affiliation of the available aurochen mtDNA genomes ([30]; this study) are indicated by the two black arrows. The geographic location of the Vado all'Arancio site is indicated in the figure inset.
Phylogenetic tree of complete mtDNA genomes. Bayesian consensus phylogenetic tree produced by PHYCAS under a prior model allowing for polytomies. Clusters of sequences linked by posterior probabilities higher than 0.7 have been collapsed. Sequences belonging to cluster T are not collapsed in order to show sub groupings, and the traditional haplogroup nomenclature is shown on the right. Clades R, P, Q and T are monophyletic, but only subclades T2 and T5 are supported as definable groups amongst the previously recognized T subclades. The disparate phylogenetic positions of the Italian and the British aurochsen are indicated. All other tips refer to modern cattle genomes.
Bayesian skyline plot. Bayesian skyline plot constructed using the Italian cattle dataset with the Bos primigenius sample under three different evolutionary rates 3.3*10-8, red, based on [35]; 1.6*10-8, black, based on [27]; 6.6*10-9, green, based on [36]. The continuous lines represent the median estimates; dotted lines represent the 95% HPD interval.
The Complete Mitochondrial Genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy

January 2011

·

401 Reads

Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.

Table 1 Evolutionary rate analysis of 11S globulin family using branch-specific model of PAML
Table 3 The content of seed 11S globulins and the copy number of their genes
Table 4 Source of the 11S globulin genes used in this study
The COG of 11S globulin gene family. Solid lines show symmetrical BeTs (the Best Hits) and broken lines show asymmetrical BeTs. Genes from the same species are adjacent. Gene ID is indicated and the prefix "Rc" denotes IDs from Ricinus communis. Among these IDs, At1g03880, At1g03890, At4g28520 and At5g44120 are known to encode CRB, CRU2, CRC and CRA1, respectively; Glyma03g32030, Glyma03g32020, Glyma19g34780, Glyma10g04280, Glyma13g18450 and Glyma19g34770 to encode Gy1-5 and Gy7, respectively; Rc29600.m000561, Rc29600.m000564, Rc30005.m001289, Rc30005.m001290, Rc29611.m000223, Rc29200.m000169, Rc29629.m001355, Rc29709.m001187, Rc29716.m000305, Rc29200.m000167 and Rc30005.m001288 to encode RcLEG1-1 to RcLEG1-5 and RcLEG2-1 to RcLEG2-6, respectively; and Os01g55690, Os10g26060, Os03g31360, Os02g15169, Os02g15178, Os02g15150, Os02g16820, Os02g16830, Os02g14600, Os02g15070, Os02g25640 and Os02g15090 to encode GluA-1, GluA-2, GluA-3, GluB-1a, GluB-1b, GluB-2, GluB-5, GluB-4, GluB-7, GluB-6, GluC-1 and GluD, respectively.
Phylogenetic relationships of sequences within the 11S globulin gene family by neighbor joining (NJ) method with bootstrap support above 50% shown at the nodes. Letter A-E indicates the branches used in analysis of evolutionary rate and positive selection.
Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots

January 2012

·

269 Reads

Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.

The log10 of cryptic species reports (CSR) as a function of the log10 number of described species in the respective taxon. Deviations from the regression line represent CSR taxon variation. Dashed lines represent 95% confidence intervals.
Regression of CSR taxon variation on taxon study bias for 19 metazoan taxa. Dashed lines represent 95% confidence intervals.
The log10 of CSR as a function of the log10 number of described species in the respective region. Deviations from the regression line represent CSR region variation. Dashed lines represent 95% confidence intervals.
Regression of CSR taxon variation on biogeographical region study bias. Dashed lines represent 95% confidence intervals.
Pfenninger M, Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7: 121

February 2007

·

627 Reads

Cryptic species are two or more distinct but morphologically similar species that were classified as a single species. During the past two decades we observed an exponential growth of publications on cryptic species. Recently published reviews have demonstrated cryptic species have profound consequences on many biological disciplines. It has been proposed that their distribution is non-random across taxa and biomes. We analysed a literature database for the taxonomic and biogeographical distribution of cryptic animal species reports. Results from regression analysis indicate that cryptic species are almost evenly distributed among major metazoan taxa and biogeographical regions when corrected for species richness and study intensity. This indicates that morphological stasis represents an evolutionary constant and that cryptic metazoan diversity does predictably affect estimates of earth's animal diversity. Our findings have direct theoretical and practical consequences for a number of prevailing biological questions with regard to global biodiversity estimates, conservation efforts and global taxonomic initiatives.

Kon T, Nohara M, Yamanoue Y, Fujiwara Y, Nishida M, Nishikawa T. Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol 7: 127

February 2007

·

287 Reads

The lancelet Asymmetron inferum (subphylum Cephalochordata) was recently discovered on the ocean floor off the southwest coast of Japan at a depth of 229 m, in an anaerobic and sulfide-rich environment caused by decomposing bodies of the sperm whale Physeter macrocephalus. This deep sulfide-rich habitat of A. inferum is unique among the lancelets. The distinguishing adaptation of this species to such an extraordinary habitat can be considered in a phylogenetic framework. As the first step of reconstruction of the evolutionary processes in this species, we investigated its phylogenetic position based on 11 whole mitochondrial genome sequences including the newly determined ones of the whale-fall lancelet A. inferum and two coral-reef congeners. Our phylogenetic analyses showed that extant lancelets are clustered into two major clades, the Asymmetron clade and the Epigonichthys + Branchiostoma clade. A. inferum was in the former and placed in the sister group to A. lucayanum complex. The divergence time between A. inferum and A. lucayanum complex was estimated to be 115 Mya using the penalized likelihood (PL) method or 97 Mya using the nonparametric rate smoothing (NPRS) method (the middle Cretaceous). These are far older than the first appearance of large whales (the middle Eocene, 40 Mya). We also discovered that A. inferum mitogenome (mitochondrial genome) has been subjected to large-scale gene rearrangements, one feature of rearrangements being unique among the lancelets and two features shared with A. lucayanum complex. Our study supports the monophyly of genus Asymmetron assumed on the basis of the morphological characters. Furthermore, the features of the A. inferum mitogenome expand our knowledge of variation within cephalochordate mitogenomes, adding a new case of transposition and inversion of the trnQ gene. Our divergence time estimation suggests that A. inferum remained a member of the Mesozoic and the early Cenozoic large vertebrate-fall communities before shifting to become a whale-fall specialist.

Pyron RA, Burbrink FT, Wiens JJ.. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13: 93

April 2013

·

5,614 Reads

Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes.

What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

October 2011

·

1,152 Reads

The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA) to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for Plethodon salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals). We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade), but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that Plethodon have an unusually large number of strongly supported conflicts between data types, which are generally resolved in favor of mtDNA in the combined-data tree (despite the large number of nuclear loci sampled). Overall, our results from 14 vertebrate clades show that combined-data analyses are not necessarily dominated by the more variable mtDNA data sets. However, given cases like Plethodon, there is also the need for routine checking of incongruence between mtDNA and nucDNA data and its impacts on combined-data analyses.

Analytical predictions on the effect of population structure on CI-dynamics. The figure shows the threshold cost-to-benefit ratio (C/B) for the invasion of CI-symbionts. A. Threshold ratio as a function of host migration rate for deme sizes of N = 4 (solid line), N = 20 (dashed line), and N = 50 (dotted line). B. Threshold ratio as a function of deme size for host migration rates of m = 0.05 (solid line), m = 0.1 (dashed line), and m = 0.2 (dotted line).
Simulation results on the effect of population structure on CI-invasion frequency. The figure shows A, the frequency of invasion as a function of migration rate for deme sizes of N = 12 (solid line), N = 20 (dashed line), N = 60 (dotted line) and N = 180 (dashed-dotted line) and B, the frequency of invasion as a function of deme size for host migration rates of m = 0.01 (solid line), m = 0.05 (dashed line), and m = 0.1 (dotted line).
Simulation results on the mean population prevalence and between-deme polymorphism in infection. Mean population prevalence (± SE) and the proportion of demes infected as a function of deme size in simulations with equal migration rate in males and females. Results are shown for host migration rates of m = 0.01 (solid line), m = 0.05 (dashed line), m = 0.1 (dotted line), and m = 0.2 (dashed-dotted line). The grey line indicates the equilibrium frequency of pe = 0.94 predicted for a panmictic population of infinite size.
Simulation results on the effect of population structure on CI-invasion frequency in a stepping stone model. The figure shows the frequency of invasion, A, as a function of migration rate for deme sizes of N = 12 (solid line), N = 20 (dashed line), N = 60 (dotted line) and N = 180 (dashed-dotted line) and B, as a function of deme size for host migration rates of m = 0.01 (solid line), m = 0.05 (dashed line), and m = 0.1 (dotted line). See Figure 2 for the results with an island model.
Simulation results on the effect of sex-specific dispersal rates on CI-invasion frequency. Invasion frequency is shown for different combinations of male migration rate (on the abscissa) and female migration rate (mf = 0.01: solid line; mf = 0.05: dashed line; mf = 0.1: dotted line; mf = 0.2: dashed-dotted line). Dots indicate combinations of equal male and female migration.
Reuter M, Lehmann L, Guillaume F. The spread of incompatibility-inducing parasites in sub-divided host populations. BMC Evol Biol 8: 134

February 2008

·

56 Reads

Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI. In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI. Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.

Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD.. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7: 135

February 2007

·

161 Reads

It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants. A broad survey was undertaken to evaluate synonymous substitution rates in mitochondrial genes of angiosperms and gymnosperms. Although most taxa conform to the generality that plant mitochondrial sequences evolve slowly, additional cases of highly accelerated rates were found. We explore in detail one of these new cases, within the genus Silene. A roughly 100-fold increase in synonymous substitution rate is estimated to have taken place within the last 5 million years and involves only one of ten species of Silene sampled in this study. Examples of unusually slow sequence evolution were also identified. Comparison of the fastest and slowest lineages shows that synonymous substitution rates vary by four orders of magnitude across seed plants. In other words, some plant mitochondrial lineages accumulate more synonymous change in 10,000 years than do others in 100 million years. Several perplexing cases of gene-to-gene variation in sequence divergence within a plant were uncovered. Some of these probably reflect interesting biological phenomena, such as horizontal gene transfer, mitochondrial-to-nucleus transfer, and intragenomic variation in mitochondrial substitution rates, whereas others are likely the result of various kinds of errors. The extremes of synonymous substitution rates measured here constitute by far the largest known range of rate variation for any group of organisms. These results highlight the utility of examining absolute substitution rates in a phylogenetic context rather than by traditional pairwise methods. Why substitution rates are generally so low in plant mitochondrial genomes yet occasionally increase dramatically remains mysterious.

Nicolas P, Bessières P, Ehrlich SD, Maguin E, Van De Guchte M.. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evol Biol 7: 141

February 2007

·

109 Reads

While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii) and yogurt (Lactobacillus delbrueckii ssp. bulgaricus), is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive horizontal gene transfer. The data give a first indication of the large extent of gene transfer that may take place in the gastrointestinal tract and its accumulated effect. For future studies, our results should encourage a careful weighing of data on phylogenetic tree topology, confidence and distribution to conclude on the absence or presence and extent of horizontal gene transfer.

SEMs of ephippial females of extant Daphnia. a-b. Daphnia (Daphnia) pulex, general view of ephippial female and ephippium. c-d. Daphnia (Ctenodaphnia) magna, general view of ephippial female, ephippium and its sculpture. Red lines show the orientation of the egg axes. White scale bars: 1 mm for a, c-d; 0.1 mm for b.
Single-egged ephippial females of Daphnia and Simocephalus. a-b. Daphnia (Ctenodaphnia) pusilla, general view of ephippial female and ephippium. c. Simocephalus exspinosus, ephippial female. d. Simocephalus vetulus, ephippium. Scales: 1 mm for a, c; 0.1 mm for b, d.
SEMs of Mesozoic ephippia of Daphnia from Khotont, Mongolia. a-c. Putative ephippium of Daphnia (Daphnia) from fragment 2046, its dorsal portion and reticulation. Note that the anterior half of the ephippium is deeper than the posterior half, giving a sub-triangular shape. d-f. Ephippium of Daphnia (Ctenodaphnia) from fragment 2018, reticulation and fine sculpture of valve. Red lines show the putative orientation of the egg axes. White scale bars: 0.1 mm for a, d; 0.01 mm for b-c, e-f.
SEMs of Mesozoic daphniid ephippia from Khotont, Mongolia. a-c. Daphnia (Ctenodaphnia) from fragment 2048, its caudal needle and dorsal portion. d. Daphnia (Ctenodaphnia) from fragment 2044. e. Unknown daphniid from fragment 2009. f. Simocephalus from fragment 2026. Scales: 0.1 mm for a, d-f; 0.01 mm for b-c.
Global map showing fossil records of the genus Daphnia and the antiquity of the subgenus Ctenodaphnia in the former Laurasia. Circles indicate fossil records of Daphnia colored by subgenus (Ctenodaphnia is red and Daphnia s. str. is blue). The grey shaded continents indicate the former Gondwanaland regions and the unshaded regions represent the former Laurasia regions. Red shading in North America indicates the present day distribution of the basal Ctenodaphnia from phylogenetic and morphological information.
Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators

May 2011

·

641 Reads

The timescale of the origins of Daphnia O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at < 10 Million years are inconsistent with the breakup of Pangaea. We examined new and existing cladoceran fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of Daphnia. We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of Daphnia, i.e., Daphnia s. str. and Ctenodaphnia. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae). Our findings indicate that the main subgenera of Daphnia are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus Daphnia is much older than previously known -- since the Mesozoic.

Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series

February 2007

·

228 Reads

Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples. In order to assess the validity and reliability of inferences based on different genetic samples, we have analyzed fish from several lakes in Nicaragua sampled at three different times over 16 years. In addition, this time series allows us to analyze the population genetic changes that have occurred between lakes, where allopatric speciation has operated, as well as between different species within lakes, some of which have originated by sympatric speciation. Focusing on commonly used genetic markers, we have analyzed both DNA sequences from the complete mitochondrial control region as well as nuclear DNA variation at ten microsatellite loci from these populations, sampled thrice in a 16 year time period, to develop a robust estimate of the population genetic history of these diversifying lineages. The conclusions from previous work are well supported by our comprehensive analysis. In particular, we find that the genetic diversity of derived crater lake populations is lower than that of the source population regardless of when and how each population was sampled. Furthermore, changes in various estimates of genetic diversity within lakes are minimal and provide no evidence for drastic changes during the last 20 years, supporting the hypothesis that the processes which have resulted in rapid speciation are primarily historical. In contrast, there is some evidence for ongoing evolution, particularly selection, in all lakes except crater Lake Masaya, perhaps reflecting the persistence of speciational processes. Importantly, we find that the crater Lake Apoyo population, for which strong evidence of sympatric speciation has been demonstrated, has lower genetic diversity than other crater lakes and the strongest evidence for ongoing selection.

Evolution of plant senescence. BMC Evol Biol 9:163-196

February 2009

·

736 Reads

Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. The expression and phylogenetic characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.

The evolutionary history of sharp- and blunt-snouted lenok (Brachymystax lenok (Pallas, 1773)) and its implications for the paleo-hydrological history of Siberia

February 2008

·

318 Reads

Broad-scale phylogeographic studies of freshwater organisms provide not only an invaluable framework for understanding the evolutionary history of species, but also a genetic imprint of the paleo-hydrological dynamics stemming from climatic change. Few such studies have been carried out in Siberia, a vast region over which the extent of Pleistocene glaciation is still disputed. Brachymystax lenok is a salmonid fish distributed throughout Siberia, exhibiting two forms hypothesized to have undergone extensive range expansion, genetic exchange, and multiple speciation. A comprehensive phylogeographic investigation should clarify these hypotheses as well as provide insights on Siberia's paleo-hydrological stability. Molecular-sequence (mtDNA) based phylogenetic and morphological analysis of Brachymystax throughout Siberia support that sharp- and blunt-snouted lenok are independent evolutionary lineages, with the majority of their variation distributed among major river basins. Their evolutionary independence was further supported through the analysis of 11 microsatellite loci in three areas of sympatry, which revealed little to no evidence of introgression. Phylogeographic structure reflects climatic limitations, especially for blunt-snouted lenok above 56 degrees N during one or more glacial maxima. Presumed glacial refugia as well as interbasin exchange were not congruent for the two lineages, perhaps reflecting differing dispersal abilities and response to climatic change. Inferred demographic expansions were dated earlier than the Last Glacial Maximum (LGM). Evidence for repeated trans-basin exchange was especially clear between the Amur and Lena catchments. Divergence of sharp-snouted lenok in the Selenga-Baikal catchment may correspond to the isolation of Lake Baikal in the mid-Pleistocene, while older isolation events are apparent for blunt-snouted lenok in the extreme east and sharp-snouted lenok in the extreme west of their respective distributions. Sharp- and blunt-snouted lenok have apparently undergone a long, independent, and demographically dynamic evolutionary history in Siberia, supporting their recognition as two good biological species. Considering the timing and extent of expansions and trans-basin dispersal, it is doubtful that these historical dynamics could have been generated without major rearrangements in the paleo-hydrological network, stemming from the formation and melting of large-scale glacial complexes much older than the LGM.

Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: Phylogeography and evidence for allopatric speciation

December 2013

·

1,234 Reads

Amblyomma cajennense F. is one of the best known and studied ticks in the New World because of its very wide distribution, its economical importance as pest of domestic ungulates, and its association with a variety of animal and human pathogens. Recent observations, however, have challenged the taxonomic status of this tick and indicated that intraspecific cryptic speciation might be occurring. In the present study, we investigate the evolutionary and demographic history of this tick and examine its genetic structure based on the analyses of three mitochondrial (12SrDNA, d-loop, and COII) and one nuclear (ITS2) genes. Because A. cajennense is characterized by a typical trans-Amazonian distribution, lineage divergence dating is also performed to establish whether genetic diversity can be linked to dated vicariant events which shaped the topology of the Neotropics. Total evidence analyses of the concatenated mtDNA and nuclear + mtDNA datasets resulted in well-resolved and fully congruent reconstructions of the relationships within A. cajennense. The phylogenetic analyses consistently found A. cajennense to be monophyletic and to be separated into six genetic units defined by mutually exclusive haplotype compositions and habitat associations. Also, genetic divergence values showed that these lineages are as distinct from each other as recognized separate species of the same genus. The six clades are deeply split and node dating indicates that they started diverging in the middle-late Miocene. Behavioral differences and the results of laboratory cross-breeding experiments had already indicated that A. cajennense might be a complex of distinct taxonomic units. The combined and congruent mitochondrial and nuclear genetic evidence from this study reveals that A. cajennense is an assembly of six distinct species which have evolved separately from each other since at least 13.2 million years ago (Mya) in the earliest and 3.3 Mya in the latest lineages. The temporal and spatial diversification modes of the six lineages overlap the phylogeographical history of other organisms with similar extant trans-Amazonian distributions and are consistent with the present prevailing hypothesis that Neotropical diversity often finds its origins in the Miocene, after the Andean uplift changed the topology and consequently the climate and ecology of the Neotropics.

Sampling localities of N. magellanica in Patagonia where: 1) Puerto Montt (R.F.), 2) Metri (R.F.), 3) Concoto Island (Ch.A.), 4) Puerto Aguirre (Ch.A.), 5) Costa Channel (Ch.A.), 6) Serrano Channel (Ch.A.), 7) London Island (S.M.), 8) Santa Ana (S.M.) 9) Possession Bay (S.M.), 10) Tekenika Bay (C.H.), 11) Orange Bay (C.H.), 12) Virginia Bay (C.H.), 13) Puerto Deseado, 14) Falkland/Malvinas Islands. R.F.=Reloncaví Fjord; Ch.A.=Chonos Archipelago; S.M.=Strait of Magellan; C.H.=Cape Horn. * Significant values after Bonferroni correction.
Haplotype network including 357 Nacella magellanica mtDNA COI sequences. Each haplotype is represented by a colored circle indicating where it was collected; the size of the circle is proportional to its frequency in the whole sample. mv=median vector (theoretical haplotype that has not been collected but should exist).
Pairwise difference distribution (mismatch distribution) for the Cytochrome c oxidase subunit I (COI) in N. magellanica in different areas of Patagonia.A) Pacific Patagonia; B) Puerto Deseado; C) Falkland/Malvinas Islands. R.F.=Reloncaví Fjord; Ch.A.=Chonos Archipelago; S.M. Strait of Magellan; C.H. Cape Horn.
Prevailing direction of currents and winds in southern South America and frequency of the dominant haplotypes in each locality. H.C.S.=Humboldt Current System; C.H.C.=Cape Horn Current, M/FC=Falkland/Malvinas Current; P.C.C. Patagonian Coastal Current. Migration rate measured as effective number of migrants (Nem) among the main areas in Patagonia (Pacific Patagonia, Puerto Deseado and the Falkland/Malvinas Islands).
Historical demographic trends of the effective population size (Ne) constructed using a Bayesian skyline plot approach based on Cytochrome oxidase subunit I (COI) haplotypes of N. magellanica. The y-axis is the product of effective population size (Ne) and generation length in a log scale while the x-axis is the time in 103 before present. The median estimate (black solid line) and 95% highest probability density (HPD) limits (grey) are shown. The thick dashed line represents the time of the most recent ancestor (trcma) and the thin dashed line represents time for the expansion in the species.
Towards a model of postglacial biogeography inshallow marine species along the PatagonianProvince: Lessons from the limpet Nacellamagellanica (Gmelin, 1791)

August 2012

·

1,492 Reads

Background Patagonia extends for more than 84,000 km of irregular coasts is an area especially apt to evaluate how historic and contemporary processes influence the distribution and connectivity of shallow marine benthic organisms. The true limpet Nacella magellanica has a wide distribution in this province and represents a suitable model to infer the Quaternary glacial legacy on marine benthic organisms. This species inhabits ice-free rocky ecosystems, has a narrow bathymetric range and consequently should have been severely affected by recurrent glacial cycles during the Quaternary. We performed phylogeographic and demographic analyses of N. magellanica from 14 localities along its distribution in Pacific Patagonia, Atlantic Patagonia, and the Falkland/Malvinas Islands. Results Mitochondrial (COI) DNA analyses of 357 individuals of N. magellanica revealed an absence of genetic differentiation in the species with a single genetic unit along Pacific Patagonia. However, we detected significant genetic differences among three main groups named Pacific Patagonia, Atlantic Patagonia and Falkland/Malvinas Islands. Migration rate estimations indicated asymmetrical gene flow, primarily from Pacific Patagonia to Atlantic Patagonia (Nem=2.21) and the Falkland/Malvinas Islands (Nem=16.6). Demographic reconstruction in Pacific Patagonia suggests a recent recolonization process (< 10 ka) supported by neutrality tests, mismatch distribution and the median-joining haplotype genealogy. Conclusions Absence of genetic structure, a single dominant haplotype, lack of correlation between geographic and genetic distance, high estimated migration rates and the signal of recent demographic growth represent a large body of evidence supporting the hypothesis of rapid postglacial expansion in this species in Pacific Patagonia. This expansion could have been sustained by larval dispersal following the main current system in this area. Lower levels of genetic diversity in inland sea areas suggest that fjords and channels represent the areas most recently colonized by the species. Hence recolonization seems to follow a west to east direction to areas that were progressively deglaciated. Significant genetic differences among Pacific, Atlantic and Falkland/Malvinas Islands populations may be also explained through disparities in their respective glaciological and geological histories. The Falkland/Malvinas Islands, more than representing a glacial refugium for the species, seems to constitute a sink area considering the strong asymmetric gene flow detected from Pacific to Atlantic sectors. These results suggest that historical and contemporary processes represent the main factors shaping the modern biogeography of most shallow marine benthic invertebrates inhabiting the Patagonian Province.

Top-cited authors