American Journal of Science

Online ISSN: 0002-9599
Publications
Article
Within the 1800 to 1900 my old Flin Flon-Snow Lake greenstone belt, Amisk Group volcanics are overlain by Missi Group fluvial sediments. Several localities along the Missi-Amisk contact, the volcanics show evidence of subaerial weathering. Field relationships, mineralogical evidence, and chemical analyses confirm that this alteration zone is a paleosol. Pedogenic fabrics and mineralogy were somewhat obscured by greenschist-grade metamorphism associated with the Hudsonian orogeny (1750 my). This is especially true in the upper meter of the paleosol, where metamorphic paragonite and sericitic micas developed in a crenulated fabric. This metamorphism did not, however, obliterate the imprint of weathering on the Amisk volcanics. Features characteristic of well-drained modern soils are evident in the paleosol. Corestones of spheroidally weathered pillow lavas occur at depth within the paleosol (Cr horizon). The corestones decrease in size upward and eventually disappear into a hematite-rich horizon at the top of the paleosol. These macroscopic changes are accompanied by a decrease in CaO and MgO and by an increase in Al2O3, TiO2, and total iron toward the paleosol-Missi contact. Ferrous iron decreases upward toward the contact; FeO was apparently oxidized to ferric iron and retained within the paleosol during weathering. The oxidation and retention of iron within the Flin Flon paleosol indicates that PO2 was probably > or = 10(-2) P.A.L. at the time of weathering. The behavior of iron in the Flin Flon paleosol contrasts sharply with its behavior in the 2200 my Hekpoort paleosol, which is strongly depleted in iron. This difference suggests that a significant increase in the ratio of PO2/PCO2 in the atmosphere took place between 2200 and 1800 mybp.
 
Article
A core drilled near Wolhaarkop in Griqualand West, South Africa, intersected highly oxidized Kuruman Iron Formation below red beds of the Gamagara Formation. The lateral equivalents of the Kuruman Iron Formation in this drill hole consist largely of siderite, ankerite, magnetite, greenalite, and quartz. The oxidation of the Kuruman Iron Formation in WOL 2 occurred almost certainly during weathering prior to the deposition of the Gamagara Formation. The date of this weathering episode is bracketed between about 2.2 and 1.9 bybp by the age of the Ongeluk lavas in the Transvaal sequence below the unconformity and by the age of the Hartley lavas in the Olifantshoek Group above the unconformity. The ratio of iron to SiO2 in the several facies of the weathered Kuruman Iron Formation in WOL 2 is nearly the same as that in their unweathered equivalents. Since SiO2 loss during weathering was almost certainly minor, the similarity of the Fe/SiO2 ratio in the weathered and unweathered BIF indicates that nearly all the "FeO" in the Kuruman Iron Formation was oxidized and retained as FeO3 during weathering. Such a high degree of iron retention is best explained by an O2 content of the atmosphere > or = 0.03 atm at the time of weathering. Such an O2 pressure is very much greater than that suggested by the composition of paleosols developed on basalt > or = 2.2 bybp but is consistent with the highly oxidized nature of the 1.85 by Flin Flon paleosol. The new data suggest that PO2 rose dramatically from about 1 percent PAL (present atmospheric level) to > or = 15 percent PAL between 2.2 and 1.9 bybp.
 
Article
Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.
 
Article
A numerical model describing the coupled evolution of the biogeochemical cycles of carbon, sulfur, calcium, magnesium, phosphorus, and strontium has been developed to describe the long-term changes of atmospheric carbon dioxide and climate during the Phanerozoic. The emphasis is on the effects of coupling the cycles of carbon and strontium. Various interpretations of the observed Phanerozoic history of the seawater 87Sr/86Sr ratio are investigated with the model. More specifically, the abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. It is suggested that the observed fluctuations are mostly due to a changing weatherability over time. It is shown that such a conclusion is very important for the modelling of the carbon cycle. Indeed, it implies that the conventional belief that the evolution of atmospheric carbon dioxide and climate on a long time scale is governed by the balance between the volcanic input of CO2 and the rate of silicate weathering is not true. Rather carbon exchanges between the mantle and the exogenic system are likely to have played a key role too. Further, the increase of the global weathering rates with increasing surface temperature and/or atmospheric CO2 pressure usually postulated in long-term carbon cycle and climate modelling is also inconsistent with the new model. Other factors appear to have modulated the weatherability of the continents through time, such as mountain building and the existence of glaciers and ice sheets. Based on these observations, a history of atmospheric carbon dioxide and climate during Phanerozoic time, consistent with the strontium isotopic data, is reconstructed with the model and is shown to be compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.
 
Article
Experimental standard partial molal volumes, heat capacities, and entropies as well as apparent standard partial molal enthalpies and Gibbs free energies of mono- and dicarboxylic acids and their anions at low temperatures and pressures are used to generate correlations for predicting the same properties at high temperatures and pressures for 59 carboxylic and 18 hydroxyacid species with the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Predicted equilibrium dissociation constants are compared with experimental values from the literature and tabulated as functions of pressure and temperature for 25 carboxylic acids and nine hydroxyacids. Close agreement between independent predictions and experimental data supports the generality of the computational techniques and the accuracy of predicted data. These results allow incorporation of a wide variety of organic acids into quantitative interpretations of geochemical processes.
 
Article
The Hekpoort paleosols comprise a regional paleoweathering horizon developed on 2.224 +/- 0.021 Ga basaltic andesite lavas at the top of the Hekpoort Formation of the Pretoria Group, Transvaal Supergroup, South Africa. In five separate profiles, from outcrops along road cuts near Waterval Onder and the Daspoort Tunnel and in three drill cores from the Bank Break Area (BB3, BB8, and BB14), the top of the paleosol is a sericite-rich zone. The sericite zone grades downward into a chlorite-rich zone. In core BB8 and in the road cut at the Daspoort Tunnel, we sampled the underlying or parent basaltic andesite into which the chlorite zone grades. We did not obtain samples of the parent material at Waterval Onder and in cores BB3 and BB14, but chemical analyses indicate that the chlorite and sericite zones in these profiles derive from underlying lavas similar to the ones we sampled in core BB8 and at the Daspoort Tunnel. The presence of apparent rip-up clasts of the paleosol in the overlying ironstones of the Strubenkop Formation in the cores from Bank Break makes it very unlikely that most of the alteration was a result of interactions with hydrothermal fluids. Desiccation cracks at the top of the paleosol that were filled with sand during the deposition of the overlying sediments at Waterval Onder point to a subaerial weathering origin. Very little, if any, Al, Ti, Zr, V, or Cr moved a discernible distance during weathering of any of the five profiles. The vertical distribution of Fe, Mg, Mn, Ni, and Co indicates that these elements were largely removed from the top of the soil during weathering. The overall abundance of these elements in each of the profiles indicates that a significant fraction of the complement lost from the top subsequently reprecipitated in the lower portion of the soil as constituents of an Fe2(+) -rich smectite. The loss of Fe from the top of the soil during weathering of the Hekpoort paleosols indicates that atmospheric PO2 was less than 8 x 10(-4) atm about 2.22 Ga. Fe2(+) -rich smectite should only precipitate during soil formation if atmospheric PCO2 is less than or equal to 2 x 10(-2) atm (Rye, Kuo, and Holland, 1995). Ca and Na were largely lost during weathering. Some Na was apparently added to the sericite zone in cores BB3, BB8, and BB14 after weathering. All five profiles are enriched in K and Rb, and most are enriched in Ba. The distribution of these elements indicates that they all were added during post-weathering hydrothermal metasomatism. Rb-Sr analysis of the paleosol at the Daspoort Tunnel indicates that metasomatism last affected that profile 1.925 +/- 0.032 Ga (Macfarlane and Holland, 1991).
 
Article
Thick carbonate-dominated successions in northwestern Siberia document secular variations in the C-isotopic composition of seawater through Mesoproterozoic and early Neoproterozoic (Early to early Late Riphean) time. Mesoproterozoic dolomites of the Billyakh Group, Anabar Massif, have delta 13C values that fall between 0 and -1.9 permil versus PDB, with values in the upper part of the succession (Yusmastakh Formation) consistently higher than those of the lower (Ust'-Il'ya and Kotuikan formations). Consistent with available biostratigraphic and radiometric data, delta 13C values for Billyakh carbonates compare closely with those characterizing early Mesoproterozoic carbonates (about 1600-1200 Ma) worldwide. In contrast, late Mesoproterozoic to early Neoproterozoic limestones and dolomites in the Turukhansk Uplift exhibit moderate levels of secular variation. Only the lowermost carbonates in the Turukhansk succession (Linok Formation) have delta 13C values that approximate Billyakh values. Higher in the Turukhansk succession, delta 13C values vary from -2.7 to +4.6 permil (with outliers as low as -5.0 permil interpreted as diagentically altered). Again, consistent with paleontological and radiometric data, these values compare well with isotopic values from 1200 to 850 Ma successions elsewhere. Five sections measured in different parts of the Turukhansk basin show nearly identical patterns of variation, confirming that carbonate delta 13C correlates primarily with time and not facies. The Siberian sections illustrate the potential of integrated biostratigraphic and chemostratigraphic data in the intra- and interbasinal correlation of Mesoproterozoic and early Neoproterozoic rocks.
 
Article
A number of investigators have used chemical profiles of paleosols to reconstruct the evolution of atmospheric oxygen levels during the course of Earth history (Holland, 1984, 1994; Kirkham and Roscoe, 1993; Ohmoto, 1996). Over the past decade Holland and his co-workers have examined reported paleosols from six localities that formed between 2.75 and 0.45 Ga. They have found that the chemical profiles of these paleosols are consistent with a dramatic change in atmospheric PO2 between 2.2 and 2.0 Ga from < or = 0.002 to > or = 0.03 atm (Holland, 1994). Ohmoto (1996) examined chemical data from twelve reported paleosols ranging in age from 2.9 to 1.8 Ga. He concluded that these chemical profiles indicate that atmospheric PO2 has not changed significantly during the past 3.0 Ga. We seek to resolve the conflict between these reconstructions through a broader examination of the paleosol literature, both to determine which reported paleosols can be definitively identified as such and to determine what these definite paleosols tell us about atmospheric evolution. We here review reports describing over 50 proposed paleosols, all but two are older than 1.7 Ga. Our review indicates that 15 of these reported paleosols can be definitively identified as ancient soils. The behavior of iron uring the formation of these 15 paleosols provides both qualitative and semiquantitative information about the evolution of the redox state of the atmosphere. Every definitely identified pre-2.44 Ga paleosol suffered significant Fe loss during weathering. This loss indicates that atmospheric PO2 was always less than about 5 x l0(-4) atm prior to 2.44 Ga. Analysis of the Hokkalampi paleosol (2.44-2.2 Ga) (Marmo, 1992) and the Ville Marie paleosol (2.38-2.215 Ga) (Rainbird, Nesbitt, and Donaldson, 1990) yield ambiguous results regarding atmospheric PO2. Loss of Fe during the weathering of the 2.245 to 2.203 Ga Hekpoort paleosol (Button, 1979) indicates that atmospheric PO2 was less than 8 x 10(-4) atm shortly before 2.2 Ga. The presence of red beds immediately overlying the Hokkalampi, Ville Marie, and Hekpoort paleosols suggests that by about 2.2 Ga there was an unquantified but substantial amount of oxygen in the atmosphere. Iron loss was negligible during formation of the 2.2 to 2.0 Ga Wolhaarkop (Holland and Beukes, 1990) and Drakenstein (Wiggering and Beukes, 1990) paleosols and during formation of all the later paleosols we previewed. Thus, atmospheric PO2 probably has been > or = 0.03 atm since sometime between 2.2 and 2.0 Ga.
 
The relationship between deep-water oxygen concentration (O 2 (d)) and phosphorus availability (represented by ‰P d† 2 P f†Š) in the oceans. Solid lines show constant surface-water oxygen levels (O 2 (f)). The model results have been calculated from equation (1), assuming a three-box ocean and well-mixed boxes 7 . The ®gure shows, for example, that with 300 mM O 2 (f), deep-water anoxia occurs when phosphorus availability rises to ,1.6 mM. With no nutrients in the ocean, bottom water oxygen remains the same as surface values. Present-day phosphorus availability is ,0.9 mM (arrow); this requires O 2 (f) values of >160±170 mM to maintain oxygen in deep-ocean waters. The three-box model is a highly simpli®ed picture of ocean dynamics which only gives broad averages. The absence of information on Precambrian ocean circulation, however, justi®es this simpli®ed approach to understanding the relationship between atmospheric oxygen levels and Precambrian ocean anoxia. See text for details.
Relative rate of obliquity drift as a function of a ice-sheet-formation phase lag. Averaged over a precession cycle, the rate of obliquity drift may be written 13,22 dv=dt ˆ K DJ 2 =J 2 †‰sin y i † 2 f y s ‡ y i †Š, where v is the mean obliquity, and the constant K is a function of various dynamical and geophysical parameters appearing in the equations of precession 12,22 . The ellipticity coef®cient J 2 is equal to C 2 A†=M ! R 2 ! , where C and A are Earth's principal inertial moments. The planetary oblateness is assumed to vary sinusoidally and to lag the phase of the obliquity-insolation cycle by an angle y i . (In reality, ice-sheet response to insolation may be much more complicated.) The amplitude of the oblateness variation, DJ 2 /J 2 , represents the maximum change that could ever be realized by lowering sea level and loading Earth's continents with ice. A second oblateness variation, which opposes the ®rst, results from isostatic adjustment of the solid Earth and is assumed to lag ice volume by y s . The long response time (,10 4 yr) of the viscous upper mantle to changes in ice volume allows the solid-Earth variation to cancel only a fraction, f(y s )DJ 2 /J 2 , of the water-ice variation, where the fractional amplitude may be written 22 f y s † ˆ 0:8 2 0:8y s =908. Shown are the rate and direction of obliquity drift for different values of the phase lags y i and y s . Plotted on the vertical axis is the quantity ‰sin y i † 2 f y s † sin y s ‡ y i †Š. The ®lled circles mark the values of y i used for the three calculations shown in Fig. 3. The solid-Earth phase lag y s , which depends in the period of the obliquity oscillation in the Precambrian times (ref. 22), was initialized to 288 for each run. For the case when y i ˆ 2308, the value y s grows from 288 to 458 over 100 Myr (indicated by an arrow) as a result of an increase to the ice-loading frequency as the obliquity drifts downward.
The isotope composition of sedimentary sulphides of probable biological origin over geological time. This excludes sulphides of obviously hydrothermal origin, those hosted in non-sedimentary rocks, and those from sediments that have experienced beyond greenschist phase metamorphism.
Article
A mathematical model has been constructed that enables calculation of the level of atmospheric O2 over the past 570 my from rates of burial and weathering of organic carbon (C) and pyrite sulfur (S). Burial rates as a function of time are calculated from an assumed constant worldwide clastic sedimentation rate and the relative abundance, and C and S contents, of the three rock types: marine sandstones and shales, coal basin sediments, and other nonmarine clastics (red beds, arkoses). Results of the modeling indicate that atmospheric O2 probably has varied appreciably over Phanerozoic time. During the Late Carboniferous and Permian periods O2 was higher than previously because of the rise of vascular land plants and the widespread burial of organic matter in vast coal swamps. A large decrease in O2 during the Late Permian was due probably to the drying-up of the coal swamps and deposition of a large proportion of total sediment in C and S-free continental red beds. -from Author
 
Article
A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 my (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 my ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.
 
Article
The Upper Proterozoic (approx 800-700 Ma) Akademikerbreen Group, Spitsbergen, comprises 2000 m of carbonates, with only minor intercalations of quartz arenite and shale and about 45 percent limestone. Stromatolites are conspicuous in outcrop but constitute only 25 percent of the total section. Micrites and coarser intraclastic carbonates derived mainly from micritic precursors comprise 60 percent of the group, while oolites make up the remaining 15 percent. Distinctive sedimentary features are discussed. Carbonate sedimentology reinforces data from other sources which indicate the last 200 to 300 Ma of the Proterozoic Eon was a distinctive interval of Earth history. -from Authors
 
Article
Cloudina-bearing biosparites and biomicrites in the lower part of the Nama Group, Namibia, contain a wide morphological diversity of shell fragments that can all be attributed to the two named species C. hartmannae and C. riemkeae. The unusual shell structure of Cloudina gives rise to a characteristic suite of taphonomic and diagenetic features that can be used to identify Cloudina-bearing deposits within the Nama Group and in other terminal Proterozoic deposits around the world. It is possible, moreover, to suggest that metazoan biomineralization occurred on a global scale by the latest Proterozoic, at the same time that evidence for complex multicellularity and locomotion in animals appears in siliciclastic "Ediacaran' rocks in the form of body and trace fossils. -from Author
 
Article
A hybrid model of the carbonate-silicate geochemical cycle is presented which is capable of calculating the partitioning of carbon dioxide between the atmosphere, ocean, and sedimentary rocks. Determines how the modern and ancient marine biospheres might be affected by an oceanic impact of a large asteroid or comet. Disruption of the carbon cycle by an impact event cannot by itself explain the scarcity of calcium carbonate in sediments found within the first few centimeters above the K/T boundary. -from Authors
 
Article
Sulfate reduction rates calculated from about 200 DSDP pore water sulfate profiles have been contoured and plotted on a map covering most areas of the world ocean. Rates show a remarkable spatial consistency, with high rates observed near the continental margins, becoming progressively lower toward the central ocean basins. Relatively elevated rates are also found in the eastern equatorial Pacific, a site of upwelling and correspondingly high rates of primary organic production. Overall, the distribution of sulfate reduction in pelagic sediments looks very similar to the distribution of primary organic carbon production. When rates are directly compared, however, the correlation between sulfate reduction and primary production is only moderately strong. Perhaps the most important influence on sulfate reduction is sediment deposition rate and the control this has over the fraction of the sedimentary organic carbon flux that becomes available for sulfate reduction. The slower the rate of sediment deposition the more time for oxic respiration and the less organic carbon that escapes to the zone of sulfate reduction. To predict most accurately sulfate reduction rates, however, the variables of primary production, water depth, and sediment deposition rate must all be integrated.
 
Article
Thermodynamic equilibrium constants of Fe-MgO-SiO2-O2 system reactions at one atmosphere and 900-1300 C
 
(Continued) Cape Ann Granite and Petersburg Granite Rb-Sr Analytical Data
Analytical Data for 13 Petersburg Granite Samples
is representative of the closed
Summary of Rb and Sr Analyses on Petersburg Granite Samples
Article
Four weathered samples of the Cape Ann Granite from Massachusetts average ten percent younger than the age from the whole-rock isochron. Fourteen fresh samples from the Petersburg Granite, Virginia, do not define an isochron, but the average age of seven weathered samples is 8 to 15 percent younger than the average of the fresh samples. For Petersburg Granite, the minimum age and maximum (Sr-87/Sr-86) o ratio are 460 m.y. and 0.7245 respectively. Assuming a (Sr-87/Sr-86) o ratio of 0.705, the maximum age is 690 m.y. The Petersburg Granite is late Precambrian to early Paleozoic in age.
 
Article
We review how the Square Kilometre Array (SKA) will address fundamental questions in cosmology, focussing on its use for neutral Hydrogen (HI) surveys. A key enabler of its unique capabilities will be large (but smart) receptors in the form of aperture arrays. We outline the likely contributions of Phase-1 of the SKA (SKA1), Phase-2 SKA (SKA2) and pathfinding activities (SKA0). We emphasise the important role of cross-correlation between SKA HI results and those at other wavebands such as: surveys for objects in the EoR with VISTA and the SKA itself; and huge optical and near-infrared redshift surveys, such as those with HETDEX and Euclid. We note that the SKA will contribute in other ways to cosmology, e.g. through gravitational lensing and $H_{0}$ studies.
 
Article
Shock experiments (10-40 kb) on lepidomelane show that kinking occurs at pressures as low as 9 kb; the intensity is related to peak pressure and shock pulse duration (0.7-0.3µ sec.), and is produced by shocks propagated along [hk0] and not along [001]. The shock-induced kinks have a wider range of their angle of external rotation (19-121°) than their static counterparts (40-60°). The ratio of the kink angles, ε and δ, scatters widely, indicating shock induced kinking is highly asymmetrical. A marked decrease of 2V from 24 to 7° with increasing pressure is observed. Laue transmission patterns show that permanent angular rotations as great as 4.4° are induced by shock pressures of 37.5 kb. In individual samples the increase in permanent angular rotations and decrease in 2V can be closely correlated.
 
Article
Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galaxies are explained as high-accretion rate but very low spin objects, while low-excitation galaxies have low accretion rates and bimodal spin distributions, with approximately half of the population having maximal spins. At higher redshifts (z~1), the prevalence of high accretion rate objects means the typical spin was lower, while in the present day Universe is dominated by low accretion rate objects, with bimodal spin distributions.
 
Article
It is proposed that Apollo 14 type breccias lithify by sintering of particles of matrix glass under stress-free conditions. Meteorite impacts generate the heat necessary for sintering. Compacted angular particles of glass with the composition of an Apollo 14 rock were sintered experimentally. Loose clods of sub 37 micron grains form in several days at 700 C. Synthetic rocks, which texturally resemble the breccias, were produced at 795 C and above in 7.5 hours. Glass devitrified with increasing temperature. At 850 C, devitrification prevents much further densification of the synthetic breccias after 2 hours. Experiments compressing glass at 500 bars at 600 C produced dense vitreous masses which did not resemble lunar breccias. Confining pressure does not play a major role in lithifying the breccias. It is concluded that Apollo 14 type lunar breccias form at shallow depths at 800 C+ in a period of minutes to days.
 
Article
The paper examines the structure and emplacement of cinder cone fields. Terrestrial cinder cone fields occur in volcanic provinces upon the flanks of major volcanoes or within relatively flat-lying volcanic fields. Measurements of cone shape and distribution were made in three volcano cone fields and three platform cone fields, and it was found that modal average values of cone basal diameter are on the order of 300 to 400 m within volcano cone fields and 900 to 1000 m within platform cone fields. The average morphometric parameters for the six fields indicate that cone diameter is positively correlated with cone separation distance, and that the size and spacing of cinder cones formed on the flanks of volcanoes is less than the size and spacing of cones constructed in volcanic fields.
 
Article
Liquid silicate systems density calculation from partial molar volumes of oxide components
 
Article
Geometrical analysis of partial fusion in earth crust and mantle formation, discussing solid solution and boundaries in MgO-iron oxide- silicon dioxide system
 
Top-cited authors
Antonio Lasaga
  • Geokinetics LLC
Donald Canfield
  • University of Southern Denmark
Rob Raiswell
  • University of Leeds
Michel Meybeck
  • Sorbonne Université
Wenjiao Xiao
  • Chinese Academy of Sciences