Hindawi

Advances in Polymer Technology

Published by Hindawi
Online ISSN: 1098-2329
Print ISSN: 0730-6679
Discipline: Polymer Science & Technology General
Learn more about this page
Aims and scope

Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel. In addition to original research articles on advances in polymer technology, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.

 
Editors
Recent publications
Polymeric materials were evaluated with regard to their spinnability and respective fibre diameters. A modified single fibre spinning device was firstly used to derive a novel generalised model, utilising process parameters (die diameter, throughput, and stretching relevant take-up pressures) and material properties (zero shear viscosity) to predict the diameter of polymeric fibres on the basis of four different polymers. Further evaluation of the resulting power law dependence was conducted on filaments produced via conventional melt spinning and meltblown processes. Fibres produced on the pilot machines showed close agreement with the model equation with only the need to adjust an easily calculable device dependent factor. The outcome of the presented work is a user-friendly model of high practical relevance, which can be used to predict the diameter of amorphous and semicrystalline polymeric fibres, independent of material and machine used with sufficient accuracy for fast estimations.
 
In this study, both polyvinyl chloride (PVC) and polyacrylonitrile (PAN) were dissolved in dimethyl formaldehyde (DMF) with 8 wt. % concentrations at 25 : 75, 50 : 50, and 75 : 25 of PVC: PAN blending. For the investigation of the homogeneity and compatibility of mixture polymer solutions, it is examined by rheological properties such as viscosity, shear stress, shear rate, and calculation of the flow behavior index, while the investigation of the stability and high density of nanofibers without beads used field-emission scanning electron microscopy (FE-SEM), Fourier transform near-infrared spectroscopy (FT-NIR), X-ray diffraction (XRD), and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The results show that blending of PAN with PVC leads to improving of the electro spun ability of PVC with more stability, and the mean nanofiber diameter was 90.873±40.82 nm at 25 : 75 PVC: PAN. Moreover, mechanical properties are ultimate tensile strength and modulus of elasticity decreasing with decreasing the blending ration from pure PVC to 75 : 25 PVC: PAN nanofibers by 71% and 83%, respectively, while the elongation at break increases by 79%, and decomposition temperatures decreased from 451.96 to 345.38°C when changing the PVC content from pure PVC to 25 : 75 PVC: PAN. On the other hand, changing of the nanofiber behavior from hydrophobicity to hydrophilic increased the PAN content in PVC: PAN blends. Furthermore, the low interaction between the chains of polymers and the crystallinity (%) and crystalline size (nm) of blend nanofibers slightly decreased compared to the pure polymers. According to all tests, the 25: 75 PVC: PAN was the best blending ratio, which gave a more stable nanofiber produced at low concentrations and more compatible between the PVC and PAN.
 
IR spectra of soap stock refining sunflower oil and a mixture composition of unsaturated and saturated fatty acids.
The bleaching clay spectrogram.
Spectrogram of diatomite.
Dependence of the sample weight decrease (Δm) on time (τ) at different temperatures.
Recovery of fat-and-oil production wastes will reduce the technogenic impact on the environment, as well as involve them in a new production cycle as a secondary material resource. As part of solving this problem, the possibilities of using fat-and-oil production wastes in the production of a tyre reclaim and a modified tyre reclaim are considered. In the course of the studies, the fat-and-oil industry wastes’ sorption characteristics are determined, and in relation to oils in static and dynamic conditions, the spent reagent reclamation ways are determined. The authors obtained a tyre reclaim and a modified tyre reclaim using the fat-and-oil industry wastes (soap stock, diatomite, bleaching clay, and fatty acids isolated from soap stock). In this work, the authors studied the possibility of using the fat-and-oil industry wastes in the formulations of a tyre reclaim and a modified tyre reclaim. Extended physical and mechanical tests of experimental rubbers led to the conclusion that it is most expedient to use the fat-and-oil industry wastes in the formulation of rubber compounds for production of sleeper pads for railroad tracks, since when using a tyre reclaim and a modified tyre reclaim, the indicators of rubber properties practically do not change and comply with control standards.
 
Packaging plastics are called ‘single-use plastics’ because of short lifetime. Among which, the three plastics of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) take more than 70%. Due to incompatibility, few research has been done on the alloy of the three plastics. The aim of this study is to investigate the possibility of single-use plastic alloy (SUPA) of ternary PE, PP, and PET as the 3D printing material. Tensile and bending tests are carried out to investigate the mechanical properties, photographs of scanning electron microscope (SEM) are taken for morphology analysis, and differential scanning calorimetry (DSC) are used to study the crystallization behavior of the alloys. The results show that there is an optimal ratio for all the components to obtain the best mechanical performances, i.e., the ratio of PP/PE=40/60 with 20 wt% PET, 2 wt% maleic anhydride grafted polypropylene (PP-g-MAH) and 2 wt% organic modified montmorillonite (OMMT). This SUPA has a tensile strength of 14.48 MPa, a tensile modulus of 586.42 MPa, a flexural strength of 15.85 MPa, and a flexural modulus of 544.67 MPa. Due to the function of compatibilizer and nanoclay (NC) will be affected by redundancy, the potential primary fibrosis while collecting the feeding filaments and the secondary fibrosis at the nozzle of 3D printing might be responsible for the variation of the mechanical performances.
 
Vinyl acetate (VAc) was polymerized to about 90% conversion in 9 h at 40°C from the colloidal microstructure of the VAc/fumed silica/cetyltrimethylammonium bromide (CTAB) system. The glass transition ( T g ) of poly(vinyl acetate) (PVAc) polymerized in these emulsion gels with silica was higher ( T g = 41 ° C ) than those of PVAc made from bulk polymerization at 60°C ( T g = 31 ° C ) and the weight average molar mass ( M w ) was also larger ( M w about 300 kg/mol) than those from bulk polymerization ( M w = 125 kg / mol ). Increased M w , T g , and lowered processing temperature for these composites could facilitate new applications for PVAc.
 
Research shows that the composite material is used as an adsorbent to remove pollutants from wastewater. This work is aimed at producing a novel composite film comprising chitosan, polyvinyl alcohol, and cornstarch incorporating nanocellulose (CPCN). The composite film was prepared by a blending method wherein nanocellulose was extracted using a chemical method from banana bract. The prepared CPCN was characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) with EDX to understand their molecular interaction and surface morphology, respectively. The effect of parameters including pH, adsorbent dosage, initial dye concentration, and contact time on the adsorption of methylene blue (MB) dye was studied. The maximum adsorption was found to be up to 63.13 mg/g MB with a pH of 10, adsorbent dosage of 2 g, an initial concentration of 150 ppm, and contact time of 120 min at room temperature (25°C) indicating a moderate adsorption capacity of the CPCN. Comparing the Langmuir and Freundlich adsorption isotherm models, the former fitted well with MB dye adsorption data, implying that the models can be applied to uptake MB dye by CPCN. In the kinetic adsorption experiment, the adsorbed dye almost reached equilibrium at about 120 min for the CPCN and followed the pseudo-second-order kinetic model. Therefore, the CPCN can be used as a potential adsorbent in wastewater treatment.
 
Polymeric foams have characteristics that make them attractive for different applications. However, some foaming methods rely on chemicals that are not environmentally friendly. One of the possibilities to tackle the environmental issue is to utilize supercritical carbon dioxide ScCO2 since it is a “green” solvent, thus facilitating a sustainable method of producing foams. ScCO2 is nontoxic, chemically inert, and soluble in molten plastic. It can act as a plasticizer, decreasing the viscosity of polymers according to temperature and pressure. Most foam processes can benefit from ScCO2 since the methods rely on nucleation, growth, and expansion mechanisms. Process considerations such as pretreatment, temperature, pressure, pressure drop, and diffusion time are relevant parameters for foaming. Other variables such as additives, fillers, and chain extenders also play a role in the foaming process. This review highlights the morphology, performance, and features of the foam produced with ScCO2, considering relevant aspects of replacing or introducing a novel foam. Recent findings related to foaming assisted by ScCO2 and how processing parameters influence the foam product are addressed. In addition, we discuss possible applications where foams have significant benefits. This review shows the recent progress and possibilities of ScCO2 in processing polymer foams.
 
Graft modifications of PVDF fluoropolymers have been identified as the efficient route to improve the properties and expand the applications. Taking advantage of C-F and C-Cl bonds in the repeat units, atom transfer radical polymerizations (ATRP) were widely used for graft modification. Recently, photoinduced ATRP has shown good spatial and temporal control over the polymerization process in contrast to thermal activation mode. This minireview highlights the progress in PVDF-based fluoropolymer modifications by using photoinduced Cu(II)-mediated ATRP and organocatalyzed ATRP. The challenges and opportunities are proposed with the aim at advancing the development of synthesis and applications of fluoropolymer.
 
In order to reveal the dielectric properties of the nonaqueous reactive polyurethane grouting material, combined with the electron microscope test analysis, it can be seen that the nonaqueous reactive polyurethane material is a porous two-phase body composed of a polyurethane matrix and closed cells. At the microscopic scale, the porous two-phase physical model is established, and the dielectric model of the material is constructed on this basis. In order to verify the dielectric model, 40 groups of nonaqueous reactive polyurethane specimens with different densities were designed and prepared in this paper. The dielectric permittivity was measured by a vector network analyzer (VNA) with an open coaxial probe within the frequency range of 1050 MHz~5010 MHz for the first time, and the dielectric properties and influencing factors were revealed according to the test data. The result shows that the dielectric permittivity of nonaqueous reactive polyurethane materials increases with the increase of density, and decreases slightly with the increase of frequency. Compared with the three models of the Rule of Mixture, Clausius-Mossotti Model and Lichtenecker Model, the calculation accuracy of the Maxwell-Garnett Model is higher, and the calculation results are more consistent with the experimental results of nonaqueous reactive polyurethane grouting materials. The experimental results can be applied to the nondestructive testing of polyurethane grouting materials and provide reference and basis for the quality evaluation of polymer structures.
 
Mine tires are an essential and expensive component of heavy mining machinery. This study explored the grounding characteristics and temperature field distribution of mining tires during driving as well as the relationships between the maximum temperature and tire inflation pressure, load, and speed. Two-dimensional and three-dimensional finite element models of mine tires were established. Steady-state rolling simulation analysis was conducted based on inflation and static load simulations. Temperature field simulation analysis was conducted with the tire section as a research object. The accuracy of the finite element model was verified. Analysis results demonstrated that the grounding contact area decreased with an increase in charging pressure and increased with an increase in load. With an increase in inflation pressure, the maximum normal grounding stress increased in the middle part of the tread and decreased near the shoulder. The maximum normal grounding stress continuously deviated in the shoulder direction with an increase in load. Temperature field analysis indicated that the tire had the maximum temperature at the binder position, where the first belt layer was connected to the second belt layer, which corresponds to the maximum stress position in the steady-state rolling simulations. Tire temperature increased with driving speed. The maximum temperature increased with an increase in tire deflection, whereas the deflection decreased with an increase in inflation pressure and increased with an increase in load. Speed had the greatest influence on the maximum temperature, followed by load, with inflation pressure having the smallest influence. The results of this research can be used to improve the service life of mine tires to improve productivity and reduce costs.
 
Monthly rainfall and average daily air temperature distribution at experimental site during the study.
Effects of multifunctional SAP doses on soil water storage (0–1.0 m) during the maize growing season in 2016–2017. SAP0=SAP0 kg ha–1; SAP30=SAP 30 kg ha–1; SAP60=SAP 60 kg ha–1; SAP90=SAP 90 kg ha–1; and SAP120=SAP 120 kg ha–1. Horizontal bars represent significant difference at the 0.05 probability level according to the least significant different test (LSD 0.05).
Maize plant height, stem diameter, and aboveground biomass under multifunctional SAP doses during the maize growing season in 2016–2017. SAP0=SAP 0 kg ha–1; SAP30=SAP 30 kg ha–1; SAP60=SAP 60 kg ha–1; SAP90=SAP 90 kg ha–1; and SAP120=SAP 120 kg ha–1. Horizontal bars represent significant difference at the 0.05 probability level according to the least significant different test (LSD 0.05).
Superabsorbent polymer (SAP) is a new water-retaining and nutrient-holding material with the potential to improve soil properties and promote crop growth in arid and semiarid areas. This study investigated the effects of multifunctional SAP on the sandy soil properties and maize productivity in Yanghuang irrigated area of Ningxia where residue incorporation was a common agricultural practice, we tested multifunctional SAP at different doses of 0, 30, 60, 90, and 120 kg ha–1 under the residue incorporation to the field. The soil bulk density in the 0–0.40 m layer was significantly lower by 6.2–8.2% under SAP at 60–120 kg ha–1 compared with no SAP, but the total soil porosity was improved significantly by 8.5–11.2%, where the SAP at 90 and 120 kg ha–1 had the greatest effects. The applications of SAP at 60 and 90 kg ha–1 significantly improved soil organic matter, and available P and K contents in the 0–0.40 m soil layer. The soil water storage (0–1.0 m) under SAP at 60–120 kg ha–1 was significantly increased by 17.1–18.7% compared with no SAP throughout the whole maize growing season. The SAP at 60–90 kg ha–1 significantly promoted crop growth and maize yield formation, and increased grain yield, whereas the net income were the highest with applying SAP at 30–60 kg ha–1. In combination with the soil physicochemical property, crop productivity and economic benefit comprehensive analysis of this two-year study, we recommended that the application of multifunctional SAP at 30–60 kg ha–1 under residue incorporation significantly improved the sandy soil properties, as well as increasing maize growth, crop productivity, and obtain the higher net income for farmers in Yanghuang irrigation area of Ningxia, China.
 
A novel type of polyimide foams (PIFs) with chemically inserted flexible aliphatic diamine (1,6-diaminohexane (HMDA)) segments was successfully synthesized and characterized in this research. The aliphatic HMDA segments were randomly incorporated in the long chain aromatic imide bonds. The obtained PIFs containing various HMDA contents (0 to 20 mol%) exhibited different morphologies such as lowered density and larger cell diameter (with higher HMDA content), and open cell ratio was increased as well. HMDA rendered flexibility to the copolymer leading to decreased rigidity. Compared to using 4,4′-oxydianiline (ODA) as the sole diamine source, incorporating low cost of HMDA would increase the PIF’s flexibility and improve its processibility while making the production more cost effective. Within some range of compromised thermal and mechanical properties, this proposed method could be feasible for industrial applications.
 
Salt water exposure conditions relevant to carbon-fibre-reinforced polymer (CFRP) prestressed concrete structures in marine environments are investigated. The diffusion into relatively small diameter CFRP tendons can be a lengthy process so the prediction of the long-term moisture uptake using short-term experiments on thin films of epoxy would be advantageous. However, the fibre inclusions within a composite introduce complexities, and factors are typically required for correlation with pure epoxy specimens. Diffusion parameters based on moisture uptake result from CFRP tendons exposed to salt water solution at 20°C and 60°C are compared with those obtained using equivalent thin film specimens. The higher temperature is selected to accelerate the moisture uptake. It is found that the measured ratios of tendon and epoxy diffusivity were temperature dependent, and the combination of the higher temperature and salt solution leads to an increased propensity for moisture uptake in the tendon. Existing analytical models to predict the CFRP tendon diffusivity from that of a thin film of epoxy did not appear to capture the observed trends. However, predictions using a unit cell with a fibre interface zone suggest that this may be due to an increased diffusivity in the interphase region.
 
To manage the polycotton textile-waste fabric (PCWF), a modified alkaline hydrolysis method is used for decolorization and separation of polyester as terephthalic acid (TPA). The effects of optimum conditions on TPA yield (%) have been determined to be 97.66 ± 1.94 % . Dye degradations and K/S values are measured by UV-visible spectrophotometer. K/S value of PCWF is 37.06 and separated cotton fabric (SCF) is 0.035, respectively. The chemical functionalities and crystallinity of PCWF, SCF, and TPA are determined by using FTIR and XRD. FTIR peak values are 1684 cm-1, 1574 cm-1, 1512 cm-1, 1280 cm-1, and 1425 cm-1 that prove transformation of polyester to TPA. XRD peaks confirm polyester conversion to TPA, and the values are 17.4, 25.13, 28.12, 29.09, and 38.7. TGA, SEM, and EDX data showed the thermal stability, morphology, and elemental composition of TPA.
 
Rapid and reliable optimal control of injection molding machines (IMMs) is critical for the effective production of injection-molded goods, especially in the situation of restricted computer resources of embedded equipment in IMMs. In this paper, an optimal tracking injection velocity control problem arising in a typical IMM is studied. An effective hybrid intelligent control approach with less computing resources for real-time implementation based on the deep learning (DL) method to mimic the classical model predictive control rule is developed to deal with the tracking control of the injection speed. The proposed method utilizes the gated recurrent unit neural network to learn and predict the optimal time series control process data produced by the traditional model predictive controller. The benefits of this approach over the conventional optimization method are illustrated through simulation results, which show that the convergent DL-based controller can effectively avoid the complex calculation in the control process of IMMs and meet the requirements of more robustness and resist environmental uncertainty to a certain level and can be potentially implemented in embedded hardware much more efficiently and conveniently with a smaller memory footprint and faster computation time.
 
Polymer materials are widely used in medical materials, food packaging, coatings, and other fields. However, the surface of the materials is easily contaminated by microorganisms, resulting in serious problems. To solve this issue, a new type of antibacterial polymer fluorescent coating was successfully synthesized by copolymerization of divinylbenzene with 7-methacryloxy-4-methyl coumarin, dodecafluoroheptyl methacrylate, and other monomers. The surface structure and thermal stability of the coating were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Fluorine was polymerized into the polymer, improving the thermal stability compared to polystyrene and polydivinylbenzene. The bactericidal and antibacterial adhesion properties of the coating materials were studied by a contact germicidal test and antibacterial adhesion test. The polymer had a strong inhibitory effect on Staphylococcus aureus. After immersion in room temperature water, the film maintained its strong inhibitory effect on S. aureus fluorescence intensity and had high fluorescence stability.
 
This paper focuses on the effect of degree of polymerization (N), density (σ), and pattern size (x) on the interaction force between a periodically patterned Poly(N-isopropylacrylamide) (PNIPAM) brush and protein. The hydrophobic interaction, the Van der Waals attractive force, and the steric repulsive force were expressed in terms of N, σ, and x. The osmotic constant (k1) and the entropic constant (k2) were determined from the fit of the steric repulsive force to an experimentally obtained force distance curve. The osmotic constant was 0.105, and the entropic constant was 0.255. Using these constants, the steric repulsive force was plotted as a function of the separation distance(s) between the substrate and the protein. The forces were determined at a separation distance equal to 0.3 nm, where L0 is the equilibrium thickness of the PNIPAM brush. At this separation distance, the value of the steric repulsive force was much higher than the value of the sum of the hydrophobic interaction and the Van der Waals attractive force for large degree of polymerization (N>100) and density (σ>0.2 chains/nm2). However, the repulsive force was comparable to the sum of the hydrophobic interaction and the Van der Waals attractive force for a small degree of polymerization (N
 
By introducing low-entanglement UHMWPE, the mechanical properties of polyolefins are improved to varying degrees. For polypropylene, the lack of interaction between UHMWPE and polypropylene results in an unsatisfactory reinforcement effect, and the disentangled state makes it easier for the particles to form defects driven by a chain explosion. In contrast, regarding polyethylene and elastomer containing ethylene segments, low-entanglement UHMWPE plays a better role in reinforcement. A series of measurements including scanning electron microscopy (SEM), rheological measurements, differential scanning calorimetry (DSC), and mechanical measurement were used to investigate the mechanisms for the different enhancement effects. It originates from interdiffusion and entanglement forming of polyethylene segments across the interface, endowing the material with different aggregated and defect structures. For instance, EPDM possesses a higher optimal dosage of UHMWPE particles reflected in good interfacial interdiffusion with UHMWPE particles, leading to significant optimized mechanical performance.
 
The effects of prepolymerization, temperature, and hydrogen concentration on propylene bulk polymerization with a commercial Ziegler-Natta catalyst were investigated, and the apparent polymerization rate constants were estimated by varying reaction temperatures, hydrogen partial pressures, and polymerization methods. It was shown that prepolymerization has different effects on the polymerization rate and isotacticity of the polymer; without prepolymerization, the polymerization rate and isotacticity reach their maximum at 70°C and 80°C, respectively, whereas the polymerization rate and isotacticity with prepolymerization increase with the polymerization temperature in the range of 50-80°C. Moderate prepolymerization time reduced the fine fraction while increasing polymerization rate and isotacticity. Appropriate prepolymerization technique can increase mass transfer performance and fragmentation, which is a promising way to improve polymerization rate, isotacticity index, and fine fraction. Otherwise, insufficient prepolymerization or excessive prepolymerization causes prepolymer particle fragmentation.
 
In this study, graphene oxide (GO) was employed as nanoscale reinforcement for the development of high-performance carbon fiber reinforced plastic (CFRP) composites. Initially, epoxy resin was modified by incorporating GO with different weight proportion from 0.05 to 0.6 wt.%. Then the unidirectional CFRP composites were prepared with the modified epoxy resin by winding and compression molding technique. The optimized GO-CFRP composites with GO content of 0.1 wt.% present tensile strength of 2756 MPa and monofilament interfacial shear strength of 29.06 MPa, respectively, which are 14.4% and 12.5% higher than the corresponding values of the pristine CFRP composites. To intuitively observe the fracture process of the CFRP composites, the digital image correlation system was employed. It is verified that the moderate addition of GO can improve the stress concentration of the CFRP composites during the deformation process. In addition, the reinforcing mechanism is investigated by analyzing the fracture surface of the modified epoxy resin and the CFRP composites. The results indicate that GO can make the cracks deflect or bifurcate along with the epoxy resin which closes to graphene, resulting in synergistically improved mechanical and interfacial properties of the GO-modified CFRP composites.
 
The catalyst synthesis of salicylaldimine Ni(II) complexes with bulky imide moieties, ethylene polymerization, and characterization of synthesized polyethylenes are described in this paper. These Ni(II) complexes are designed to bear 2-aminobiphenyl and 4-tritylaniline. Results confirmed relatively high activity (up to 4 × 10 4 g PE mol Ni-1 h-1) of these catalysts in ethylene polymerization. Moreover, Ni(II) complexes demonstrated enhanced thermal stability, maintaining activity level up to 80°C. The generated polyethylenes possess moderate branching density and high melting temperatures. Less bulky 2-aminobiphenyl group resulted in higher branch content, while in Ni(II) complexes bearing 4-tritylaniline, more linear structure was observed. These semicrystalline polyethylenes showed mechanical properties similar to thermoplastics.
 
The glass transition of amorphous polymers determines the mobility of polymer chains and the time scale of relaxation processes. The glass transition temperature is reduced by the presence of low molecular weight molecules, e.g., dissolved gases or organic solvents. The quantitative knowledge of reduction of the glass transition temperature caused by the addition of carbon dioxide in a polymer melt is highly relevant for foam extrusion. However, measurement of the reduction of glass transition temperature caused by gas loading has to be performed under elevated pressure which implies high experimental efforts. In this work, we discuss and compare three methods for determination of the influence of carbon dioxide on thermal properties of amorphous polymers, i.e., calorimetric measurements, creep tests, and rheological experiments. The advantages and disadvantages of these methods are elucidated. Furthermore, the influence of molecular structure of the styrenic and vinylpyridine polymers on the glass transition temperature is discussed. Polystyrene generally shows the highest reduction of glass transition temperature. Poly(2-vinylpyridine) and poly(4-vinylpyridine) show a slightly less pronounced behaviour in comparison to polystyrene because of the lower polarity of polystyrene. Poly(α-methyl styrene) is associated with a different dependence of glass transition temperature on gas loading in calorimetric and rheological experiments.
 
This work is about making hybrid composite materials out of carbon fiber mats and basalt fiber mats that are 40% reinforced with a 60% epoxy polymer matrix. Traditional hand layup has been used for the fabrication process to make five laminates of these two fibers. The mechanical properties of the hybrid composite were evaluated by measuring its tensile strength, flexural strength, impact energy, and hardness. The results showed that adding more carbon fiber layers to the composite made a big difference in its mechanical properties. In sample A, the tensile strength is 280 MPa, the flexural strength is 247 MPa, and the basalt fiber can keep more impact energy of 24 J in sample E, along with the carbon fiber and epoxy matrix. A scanning electron microscope was used to figure out how carbon/basalt fiber composite laminates break down.
 
In this work, the effects of amino silane-grafted areca fibre and papaya slice biochar particle on the mechanical, thermal conductivity, and dielectric properties of epoxy resin biocomposite were shown. The goal of the study was to find out how the way fibres are treated affects their properties and how those properties affect the composite as a whole. The acid hydrolysis process is used to treat the raw chopped fibre and slice-dried particles with amino silane and then air-dry them in an oven. The oven-dried areca nut fibre and charcoal particles are then used with a hand-layup method to make composites that meet ASTM standards. According to the results, the tensile and flexural strengths got better by 64% and 50%, respectively, and the impact resistance got better by 93%. The use of reinforcing materials gradually improved the dielectric properties and the way heat moved through the material.
 
The vibration attenuation mechanism of shear thickening fluid- (STF-) filled sandwich structures was investigated in this study. Structural equivalent damping, stiffness, and mass increased simultaneously with the increase in the volume fraction of shear thickening fluid. However, the damping ratio decreased and natural frequency increased with the increase in structural mass. Thus, the damping ratio was not a monotonically increasing function of the volume fraction of STF. A modified shear strain model of the damping layer was developed based on the following conditions: (1) under the condition of small strain, shear thickening fluid was regarded as linear viscoelastic material, and (2) the warpage of the sandwich beam was considered during deformation and the influence of STF on the shear strain of sandwich beam. According to the modified shear strain model of the damping layer, the shear thickening occurred at 1 Hz to 20 Hz during vibration. Therefore, the resonance point of the structure shifted to the left. The predictions were in excellent agreement with the experimental results. The results demonstrated that shear thickening fluid improved the vibration damping performance of the sandwich structure, while the thickening ability was not the higher, the better.
 
We present a method and several applications for the synthesis of hydrogel-crosslinked microneedle arrays utilizing microwave-assisted drying, ensuring a significant reduction in reaction preparation time while maintaining quality. We demonstrate the feasibility of drying hydrogels using microwaves and thus extend to crosslinked microneedle fabrication. Crosslinking was performed using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent. Infrared spectra of the microneedle arrays were measured with attenuated total reflection-Fourier transform infrared (ATR-FTIR). The surface morphology of the microneedle arrays was observed with scanning electron microscopy (SEM). The microneedle arrays were evaluated in terms of mechanical strength, swelling kinetics, rheological properties, degradation rate, and glucose iontophoresis. The results show that this method can shorten the reaction preparation time by 5 hours, and the prepared crosslinked microneedle array has better crosslinking efficiency, swelling effect, and greater mechanical strength than traditional methods.
 
Composites that were made stronger with jute fiber and glass fiber were used to test the performance of filament wound abaca fiber composites. Tensile, bending, and dynamic mechanical analyses were used to figure out the mechanical properties of the composites. Fiber composites and glass-fiber composites were found to have higher density and mechanical properties than abaca fiber-based composites. This is because resin did not get into the cell cavity of the fiber’s inner tissue structure. The abaca fiber composites that worked the worst were those in which the fibers were pulled out while the fibers on the surface were torn. The fiber-reinforced epoxy circumferential composite interface junction in the twisting abaca fiber circumferential composite was found to be more flexible and have a higher glass transition temperature than any of the other composites (6000 MPa). We found that twisting abaca fiber-naval ordnance laboratory and twisting abaca fiber-prepared circumferential composite had the lowest frequency dependence and performance variability. To improve composite properties, both the outside and inside structures of twisting abaca fiber need to be fixed. There is also a rise in fiber-to-resin contact and a rise in fiber surface area. The diameter of the fibers also gets smaller.
 
In this study, a series of polyoxymethylene copolymers are synthesized by bulk cationic ring-opening polymerization by 1,3,5-trioxane (TOX) with 1,3-dioxolane (DOX), octamethylcyclotetrasiloxane (D4), and cyclohexane oxide (CHO) as the second monomer using phosphotungstic acid (PTA) as an initiator. The polymer products were characterized by hydrogen nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). And the copolymerization energy barrier was calculated at the b3lyp/6-31g(d) calculation level using density functional theory (DFT) to explore the copolymerization ability of the second monomer with 1,3,5-trioxane. The results showed that CHO as the second monomer more easily participated in the copolymerization reaction, and the copolymers showed better thermal stability.
 
Vanadium dioxide (VO2) particles were modified by grafting with poly(styrene sulfonate) (PSS) and poly(3,4-ethylenedioxythiophene) (PEDOT) via surface-initiated atom transfer radical polymerization (SI-ATRP). Critical transition temperature ( T c ) of the modified VO2 ranging between 77 and 79°C was obtained. After mixing with acrylic-based emulsion, dispersion of the VO2 particles in the polymer matrix was significantly improved. The visible light transmittance through the composite films above 75% was maintained if a concentration of the modified VO2 particles loaded into acrylic polymer film was no greater than 1.0 wt%. The NIR transmittance through the acrylic/VO2@PSS : PEDOT also dropped by 9-10%, compared with that of the pure acrylic film (without any particles). Finally, glass substrates coated with the acrylic/VO2@PSS : PEDOT composite films could reduce the temperature inside a model house by 5-6°C, compared with that of the control system (pure acrylic coating film without VO2 particles). Overall, this work demonstrated that it was possible to improve the dispersion of VO2 particles in polymer films without sacrificing its NIR shielding ability by grafting the surface of VO2 particles with PSS : PEDOT chains, while providing the optimum grafting density and particle loading.
 
Despite carbon nanotubes (CNTs) have garnered tremendous research interests for enhancing the electrical and thermal conductivity of polymers, it is still a considerable challenge to achieve the uniform dispersion of carbon nanotubes in polymer matrix. Herein, inspired by the mussel-inspired chemistry, we adopted the strategy of coating CNTs with polydopamine. And the polysilsesquioxane-modified CNTs (CNTs-PSQ) were obtained based on the click chemistry reaction. The FT-IR, Raman, XRD, and TGA collectively demonstrated the successful modification of PSQ on the surface of CNTs. The incorporation of PSQ could significantly improve the dispersion of CNTs in the silicon rubbers, and a strong interfacial interaction was formed between CNTs-PSQ and silicon rubber matrix, as observed from TEM images of silicon rubber/CNTs-PSQ nanocomposites. Meanwhile, compared with the nanocomposites with neat CNTs, the ones with CNTs-PSQ exhibited simultaneously improved electrical conductivity and insulating performance. This strategy proposed for the preparation of PSQ-modified CNTs provides insights toward highly insulating and thermal conducting polymers.
 
Removable orthodontic appliances fabricated from poly (methyl methacrylate) (PMMA) have been routinely used for active orthodontic correction and as retention appliances. This article reports the use of a combination of biodegradable-grade poly (lactic acid) (PLA) and cooking-grade sesame oil as a biodegradable alternative for PMMA. The underlying purpose is to combat the environmental hazards due to nondegradable PMMA as well as to overcome its structural and mechanical drawbacks. The fabrication technique that has been used is fused deposition modeling-based 3D printing technology. Oil-dipping for 24 h was done to render the PLA hydrophobic and to reduce its brittleness. Incorporation of oil within the PLA base plate has been confirmed by FT-IR and FT-Raman spectroscopic techniques. The PLA-cooking oil material has exhibited satisfactory tensile, compressive and flexural strengths. The proposed material has demonstrated excellent attributes in terms of product precision, dimensional stability, density, hardness, and maximum load bearing capacity for the purpose of fabricating orthodontic appliances.
 
A unique orthogonal crosslinker-induced hydrogel, whose mechanical strength can be tunable by the crosslinker topology upon thermal treatment, is described herein. The crosslinker containing cationic moieties and crosslinkable styrenyl groups was employed for the preparation of orthogonally crosslinked hydrogels having ionic and covalent characteristics. The manipulation of the orthogonal crosslinkers topology and the ionic bond strength between cationic and anionic moieties facilitated the control of the mechanical properties. Short-term temporal modulation of hydrogel moduli, a key factor of the substrates for cell development, was demonstrated and could provide dynamic microenvironment for biological process. In addition, on-demand control of the elastic properties of the hydrogels by application of a thermal stimulus provides new avenues to regulate cell growth. Furthermore, the orthogonality of the crosslinkers allowed molecular functionalization of a wide range of molecules of interest to the hydrogels by thiol-ene Michael addition (nucleophilic addition of sulfhydryl and carbon-carbon double bonds) in a friendly manner as demonstrated in our work.
 
Water flux is one of the most important performance parameters of the reverse osmosis (RO) membrane. The higher water flux means lower energy cost when treating the same volume of feed solution with membrane separation technology. However, the increase of membrane water flux always corresponds to the decrease of solvent rejection, known as the “trade-off” effect. In addition, the surface fouling of membranes is often a serious problem, as frequent cleaning not only increases the operating cost but also shortens the life of the membranes. Recently, various hydrophilic nanomaterials have been used to improve the performance of membranes. To fabricate thin film nanocomposite (TFN) RO membrane with high flux and antifouling performance, maleic anhydride-grafted graphene oxide (MG) was successfully synthesized and incorporated into the polyamide (PA) layer via the interfacial polymerization (IP) method. We performed the IP reaction with m-phenylenediamine (MPD) and trimesoyl chloride (TMC) as reactive monomers on a polysulfone (PSF) substrate, and acid absorbent (TEA) and surfactant (SDS) were added to improve the separation performance of the membrane. The effects of MG incorporation on the membrane morphology and separation performance were investigated. SEM and AFM results show that the surface of the MG membrane is rougher than that of the membrane without MG. In addition, excessive loading of MG will lead to aggregation of MG nanosheets. FT-IR spectra indicate that the interaction between MG and PA layers results in an increase of hydrophilic groups on the surface of the TFN membrane, which is further confirmed by the results of the contact angle. The optimal MG doping concentration in the aqueous solution is 0.004 wt%, the water flux of the resultant TFN membrane is significantly increased to 51 L·m-2·h-1, 150% higher than the blank control membrane, which also performs a higher NaCI rejection (97.5% vs. 96.6%). Furthermore, the MG-incorporated RO membrane exhibits superior antifouling performance compared with the blank control membrane.
 
In this paper, we investigate the static and dynamic properties of linear polymer in the presence of obstacles. A Monte Carlo (MC) simulation method in two dimensions with a bond fluctuation model (BFM) was used to achieve this goal. To overcome the entropic barrier, we put the middle monomer of the polymer in the middle of the pore, which is placed between ordered and disordered obstacles. We probed the static properties of the polymer by calculating the mean square of the radius of gyration and the mean square end-to-end distance of the polymer, and we found that the scaling exponents of both the mean square end-to-end distance R 2 and the mean square radius of gyration R g 2 as a function of the polymer length N vary with the area fraction of crowding agents, ϕ . The dynamic properties have also been studied by exploring the translocation of the polymer. Our current research shows that the escape time τ increases as ϕ increases. Moreover, in the power-law relation of escape time τ as a function of polymer length N , the scaling exponent ( α ) changes with ϕ . Furthermore, the study has shown that the translocation of the polymer favors the disordered barriers.
 
This work shows the possibility to employ sulfonated tetrafluoroethylene-based fluoropolymer-copolymer, commercially known as Nafion, as a sensible layer on sensors to detect organic solvents such as ketones. The detection and evaluation of ketone corpuses is very important for multiple applications on medicine, specially to detect and evaluate diabetes mellitus from the breath of patients. Nafion is a very stable copolymer, easily available and relatively inexpensive. This allows us to envision the possibility of having cheap and reliable sensors to detect vapors of these substances based on this copolymer. The main result of the present work is that Nafion can protonate gaseous ions from organic solvents, such as acetone and similar substances, which modify its electrical properties, presenting a differentiated behavior according to the chemical nature of these substances, which could lead to their identification, designing an electrical nose, because each behavior is a fingerprint of the substance to detect. Then, this material can be used in the design of electrical sensors, which can be inexpensive, reliable, and chemically stable, representing an excellent alternative to ceramic sensors.
 
Natural fibers are an increasing potential alternative to synthetic fibers in recent research, due to their unique properties and weight ratio in composite materials. In this work, the banyan mat and ramie mat are used as reinforcement phase and the epoxy polymer is used as matrix material, and granite nanoparticles are used as filler for making composite laminates. The two phases of reinforcing and matrix were taken at an equal ratio of 50% in each, and the conventional hand layup process was fabricated making five different sequences of laminates. In this analysis, the dynamical mechanical properties of this hybrid composite are identified with the erratic weight ratio of banyan mat and ramie mat fabrics. The results revealed the maximum storage modulus is 1580 MPa at 93.8°C and a loss modulus of 298 MPa at 93.8°C in sample A, 12% more storage modulus, 17% more loss modulus was obtained in sample A compared to sample B, and 29% E ′ and 27% E ″ more compared to sample E and also using storage modulus, loss modulus, damping factor are the viscoelastic behavior which can reveal the glass transition temperature of hybrid composite laminates by conducting dynamic mechanical analysis, and SEM test was used to identify the failure mode of hybrid composite.
 
From the previous scarce periods, the investigation has evolved from traditional resources and compounds and toward frivolous constituents to produce small and hugely influential substances for specific purposes. The foremost goal of the current examination is to explore the effectiveness of aluminium tetrahydride (ATH) filler addition on the Calotropis gigantea fibre (CGF)/polyester-based hybrid composite. The hybrid materials with a 3 mm width and three layers of CGF were manufactured using the conventional technique. To achieve the objectives mentioned above, the following constraints like (i) Wt.% of ATH, (ii) number of CGF Layers, and (iii) cryogenic treatment hours, each at three different levels, were chosen. The composite was fabricated as per the design of L9 orthogonal array. This research measured the mechanical characteristics like flexural, tensile, and impact characteristics. The materials with 5 wt proportions of filler, 3 layers of CGF and 30 min of liquid nitrogen treatment (A2, B3 and C2) showed better mechanical strength. They were studying the broken specimen's morphological behavior by scanning electron microscopy (SEM).
 
In order to understand the effect of different carbon materials on the crystallization and melting behavior of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE composites were prepared by different carbon materials through solution mixing in this paper. UHMWPE was oxidized to improve the interfacial interaction between UHMWPE and carbon materials. The UHMWPE composites and oxidized UHMWPE composites were prepared using granular graphite particle (GP), graphite nanoplatelets (GNP), and flaky graphene oxide (GO) as fillers. The effect of the type and the content of carbon materials and the oxidization of UHMWPE on crystallization and melting temperatures, crystallinity, and crystal form of UHMWPE and oxidized UHMWPE composites was investigated by differential scanning calorimetry, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectrum, and Fourier transform infrared spectroscopy. The results indicated that there are coexistence of the heterogeneous nucleation and the hindering effect of crystal growth by carbon materials for UHMWPE crystallization. The different influence of carbon materials on the crystallization and melting behavior of UHMWPE was discussed by the heterogeneous nucleation of carbon materials and the restriction of the macromolecular chain motion of UHMWPE by carbon materials.
 
Penetrating cracks with different crack angles were prefabricated in viscoelastic hydroxyl-terminated polybutadiene propellant specimens. Microphotography was performed while tensile tests were conducted on a universal testing machine at tensile rates of 2 mm/min, 10 mm/min, and 500 mm/min. Specimen measurements were obtained by digital image correlation (DIC). The strain fields on the surfaces and around the cracks were studied, and the crack propagation trends for precracked specimens with angles of 0°, 45°, and 75° with respect to the horizontal plane were investigated. Stress–strain curves, tensile microscopic images (50x magnification), and fracture microscopic images (100x magnification) were obtained for different prefabricated crack angles and different stretching rates. It was observed that under low-rate stretching, the propellant crack growth exhibited three stages: a linear stage, a yield stage, and a failure stage. However, the crack propagation in the propellant under high-speed stretching had no yield stage. When there were no prefabricated cracks, a greater tensile rate led to a greater ultimate strain. The maximum strains at the crack tips measured by DIC decreased from group C1 to groups C2, C3, and S. The specimens corresponding to different crack inclination angles are pulled off. It was seen that the closer a crack was to positive breaking, the straighter was the edge notch of the specimen.
 
Constructing facilitated transport based on π-complexation has been drawing more and more attention in mixed matrix membranes (MMMs) for pervaporative desulfurization. Herein, a unique molybdenum disulfide (MoS2) yolk-shell nanostructure (MYNS) was prepared and incorporated into the polyethylene glycol (PEG) matrix to fabricate MMMs for model gasoline desulfurization by PV. Moreover, the effects of MYNS content, feed sulfur concentration, and feed temperature on the performance of PEG/MYNS MMMs were evaluated. It was found that there is good interfacial compatibility between the MYNS filler and the PEG matrix, and the resultant MMMs show enhanced swelling resistance against thiophene. The PV results revealed that the as-fabricated MMMs are thiophene-selective, and their desulfurization performance in the pervaporative removal of thiophene from n-octane is remarkably evaluated due to the addition of MYNS. The MMMs display the highest sulfur enrichment factor of 4.02 with an associated permeation flux of 2587 g·m−2·h−1 with the MYNS loading of 3 wt. % when carrying out in an n-octane and thiophene (500 μg·g−1) mixture at 343 K. Furthermore, a consistent increment in the permeation flux accompanied with a continuous reduction in the enrichment factor was observed with increasing the feed sulfur concentration and feed temperature. This work may offer great potential for practical gasoline desulfurization applications.
 
Schematic illustration of the preparation of sodium alginate-based PRP dual-network hydrogels and their application as a wound dressing [66].
Schematic illustration of (a) preparation of CBPGCTS-SF@PRP hydrogels and (b) diabetic wound healing with the participation of dermal fibroblasts, endothelial cells, and mesenchymal stem cells in tissue repair and (c) their effects on wound healing in diabetic rats [69].
Schematic illustration of (a) preparation of CBPGCTS-SF@PRP hydrogels and (b) diabetic wound healing with the participation of dermal fibroblasts, endothelial cells, and mesenchymal stem cells in tissue repair and (c) their effects on wound healing in diabetic rats [69].
Schematic illustration of (a) preparation of CBPGCTS-SF@PRP hydrogels and (b) diabetic wound healing with the participation of dermal fibroblasts, endothelial cells, and mesenchymal stem cells in tissue repair and (c) their effects on wound healing in diabetic rats [69].
Schematic illustration of (a) preparation and (b) wound healing effect of ODEX/HA-AMP/PRP hydrogels for skin reconstruction of diabetic infection [74].
Platelet-rich plasma (PRP), a platelet-rich plasma concentrate obtained from whole blood, has been widely used to treat wounds due to its high contents of growth factors that can not only play a role in the hemostasis, repair, and anti-infection of wounds but also promote cell proliferation, maturation, and angiogenesis. However, after PRP activation, its clinical effect was limited because of burst and uncontrolled release of growth factors and poor mechanical properties of PRP gels. In recent years, increasing attention has been moved to the loading and sustained release of growth factors in PRP by polymeric carriers. Hydrogels, as an interesting carrier, enable controlled delivery of growth factors by structural designs. Moreover, using hydrogels to encapsulate PRP is favorable to controlling the mechanical properties and water maintenance of PRP gels, which can provide a stable and moist wound repair environment to promote coordinated operations of skin tissue cells and cytokines as well as wound healing. In this review, the state of the art of hydrogels that have been used to load PRP for wound treatments is introduced, and further prospects in the research area are proposed.
 
Reinforcing fibers, nanofillers, matrix materials, and manufacturing techniques all have a role in the mechanical characteristics of hybrid composites. MWCNTs-reinforced E-glass/Kevlar/epoxy composites are appropriate fillers for structural applications. The impact of different concentrations of MWCNT fillers (0.4%, 0.8%, and 1.2% wt) on the mechanical characteristics of hybrid composites has been studied. Tensile and bending strength, as well as hardness, were measured in compression-molded composites. The effects of compression pressure, mold temperature, and applied pressure on hybrid (0.8% MWCNT) were investigated. When it came to composite tensile and bending strength, compression pressure was the most important factor, closely succeeded by mold temperature and pressure period. Compression molding were optimized, resulting in a tensile strength of 183 MPa, a bending strength of 158.3 MPa, and a hardness value of 23.8 HV.
 
This study investigates the mechanical and thermal properties of biocomposite in relation to their hybridization. Compression moulding was utilised to produce hybrid biocomposites composed of polyester resin reinforced with kenaf, jute, and three distinct combinations of kenaf/jute fibers. To increase the bonding of kenaf and jute fibers with polyester resin, a 5 percent NaOH solution was administered to them. The following stacking sequences were used to manufacture a total of five different types of laminates: polyester resin 80 wt%/kenaf fiber 20 wt%, polyester resin 80 wt%/jute fiber 20 wt%), polyester resin 80 wt%/kenaf fiber 5 wt%/jute fiber 15 wt%, polyester resin 80 wt%/kenaf fiber 10 wt%/jute fiber 10 wt%, and polyester resin 80 wt%/kenaf fiber 15 wt%/jute fiber 5 wt%. In the mechanical and thermal tests, it was discovered that the polyester resin 80 wt%/jute fiber 20 wt% biocomposites had increased strength compared to the other hybrid biocomposites investigated.
 
The unique attributes, biodegradability, biocompatibility, perfect accessibility, and low production costs led to the use of natural gums in a different section of our lives. Among them, we can mention gums obtained from microorganisms (xanthan gum and gellan gum), plant tissues (Arabic gum and gum tragacanth), seeds (konjac gum and guar gum), seaweeds (alginates, agar gum, and carrageenans). Gums have essential applications in the medical and pharmaceutical, food, biotechnology, and critical agricultural industries. Encapsulation is one of the new methods to increase the stability of bioactive compounds during processing and storage. Encapsulation technology using natural gums is a new way to improve the performance of microbial agents in various sciences, especially agriculture, which represents a bright future in this field.
 
A type of pentaerythritol cinnamaldehyde bisphenol dicyanate ester (PCBDCy) containing oxaspirocyclic structure is well designed and synthesized in three steps from cinnamaldehyde, pentaerythritol, phenol, and cyanogen bromide. The products in each step are characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and ¹H NMR spectroscopy. The mechanical properties, dielectric properties, thermostability, and water absorption of PCBDCy are investigated in detail. The results show that compared with bisphenol A dicyanate (BADCy), the PCBDCy possesses more excellent comprehensive properties. The bending strength and flexural strength are increased by 10.71% and 47.62%, respectively. The fracture toughness KIC and GIC are 1.5 times and 2 times of BADCy, respectively, indicating that its mechanical properties have been considerably improved. The dynamic mechanical curves indicates that the degree of phase separation is significantly reduced, the tan (δ) value representing the flexible phase is obviously shifted to the high temperature region, and the initial decomposition temperature was 12°C higher than that of BADCy, indicating that the material has excellent thermal stability. In addition, the dielectric constant and loss tangent are almost as same as those of BADCy, maintaining good dielectric properties. The water absorption rate has increased to 1.03±0.03%. Compared with BADCy, its comprehensive performance is more suitable for the field of microelectronic packaging.
 
Aqueous solution polymerization method.
Inverse suspension polymerization method agent.
Inverse emulsion polymerization method.
Microwave radiation polymerization method.
Water absorption mechanism of WRA.
Water retaining agent (WRA) is a kind of functional polymer material with strong water absorption capacity. It can absorb and release water repeatedly and is often used for crop growth in water shortage areas. It is of great significance to the development of water-saving agriculture. There are many kinds of water retaining agents, and with the development of science and technology, the raw materials for making water retaining agents tend to be diversified. And they are more and more widely used in many fields closely related to our life, such as industry, food production, medical treatment, and greening, and the manufacturing process is more and more mature. In addition, the water absorption capacity of water retaining agent is not only related to its own components but also related to the external environment. The water absorption mechanism and the factors affecting water absorption capacity of water retaining agent were explored as follows.
 
Schematic flow of TS-based composite preparation.
The influence of TTSF loading on water absorption for reinforced epoxy composites.
The kinetic plot for water absorption on different TTSF fiber loadings of reinforced epoxy composites.
The 3D interactive effect of water absorption with respect to tome and TS fiber loading.
Recently, reinforced polymeric composites prepared from natural fibers have received a significant interest among the researchers because of its appreciable sustainability, environmentally friendly, and low cost. However, one particular issue, that is, hydrophilic property, still needs to be addressed for its successful applications. Since the hydrophilic tendency of natural fibers is extremely undesirable, it leads to the quick degradation of fiber-based polymer composites. Hence, the fiber property, hydrophilic nature, is influenced by the presence of noncrystalline and voids part of these fibers that significantly influences the polymer matrix adhesion. Hence, it is very important to understand the water absorption behavior of reinforced fiber composites. In this study, a crop residual material specific to Ethiopia, teff straw (Eragrostis tef), was used as fiber material. The fiber was treated with 1% NaOH followed by 1% CH2=CHCOOH at room temperature for improving the bonding strength between the fiber and polymer, which leads to suppress the water absorption. The investigation on mathematical model for water absorption property at different fiber loadings (4%, 8%, 12%, 16, and 20%) was carried out, and the analysis on the kinetic behavior of water absorption was also investigated. In addition, the response surface-based statistical modeling which correlates water absorption, fiber loading, and time has been analyzed.
 
Fuel cells are energy conversion devices that directly convert chemical energy of fuels such as hydrogen to useful work with negligible environmental impact and high efficiency. This study deals with thermodynamic analysis and modeling of polymer electrolyte membrane fuel cell (PEMFC) power systems for portable applications. In this regard, a case study of powering a computer with a PEMFC is presented. Also, an inclusive evaluation of various parameters such as voltage polarization, overall system efficiency, power output, and heat generation is reported. In addition, a parametric study is conducted to study the effect of many design and operation parameters on the overall efficiency. Results show the direct influence of current density and temperature values on optimization of the design parameters in PEMFCs.
 
Temperature-sensitive cure kinetics based on bisphenol A oligomeric diglycidyl ether and branching diphenylmethane di-isocyanate, polymer aliphatic or lower molecular weight aromatic amines, and polypropylene and epoxy composites were examined. Polypropylene networks are formed initially, followed by amine hardeners interfering with epoxy oxirane rings to frame linear oligomers. Finally, the system is formed by a reaction between amines obtained in the second phase and epoxy oxirane rings during the curing step. This three-stage treatment was illustrated. The activation energy was calculated using the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose isoconversational approaches to cure degree. The Ea-to-α correlation was determined using these approaches, revealing that the research curing systems exhibited autocatalytic effects. Among the materials studied, compounds with low molecular weight aromatic amines had the strongest and longest-lasting tensile characteristics. There are numerous advantages to slow curing and discrete stages of composite creation, including better mechanical properties.
 
This paper presents the reinforcement of nanocellulose (NC) in polyvinyl alcohol (PVA) to examine the effect of the amount of reinforcement on the properties of PVA. The nanocellulose was successfully extracted by sulfuric acid hydrolysis method and ultrasonication, and successively reinforced with polyvinyl alcohol by the solvent-casting method. After incorporating nanocellulose into the PVA matrix, the effect of nanocellulose on the tensile strength, elongation at break, water absorption capacity, transmittance, thermal stability, and biodegradability of PVA was investigated. The tensile strength increased from 24.5 ± 0.53 MPa to 35.5 ± 0.55 MPa and 40.6 ± 0.73 MPa with the addition of 2%NC and 5%NC, respectively. The elongation at break increased from 40 ± 0.53 % to 45.7 ± 0.53 % with 2%NC, and after the reinforcement of 7%NC, it decreased to 32.2 ± 0.75 % . The water absorption capacity result reveals that neat PVA absorbs the highest amount of water which is 84.6 ± 0.56 % and is reduced to 73 ± 0.78 % by adding 2%NC. By increasing the nanocellulose loading to 7%, the water intake capacity was reduced to 61 ± 0.59 % which illustrates the water intake was reduced linearly with the increment of NC. The ultraviolet-visible (UV-Vis) result implies that the transmittance of neat PVA and PVA-2%NC composite film was 85.4% and 78.2% at 600 nm, respectively, which indicates the decrement in transmittance. The thermogravimetry analysis (TGA) reveals that the thermal stability of polyvinyl alcohol after incorporating nanocellulose particles was reduced. The weight loss of neat PVA is 70.7 ± 1.7 % after 90 days while the weight loss of the PVA composite films reinforced with 1%, 3%, 5%, 7%, and 9% was 65 ± 1.85 % , 57 ± 1.57 % , 55.6 ± 0.64 % , 52 ± 1.73 % , and 53.1 ± 1.72 % , respectively. The scanning electron microscopy micrograph for the PVA-6%NC nanocomposite film reveals a dispersion of nanocellulose in a matrix.
 
Journal metrics
$1,975
Article Processing Charges (APC)
29%
Acceptance rate
16 days
Submission to first decision
79 days
Submission to final decision
21 days
Acceptance to publication
2.502 (2021)
Journal Impact Factor™
5.7 (2021)
CiteScore™
Top-cited authors
Jyoti Jog
  • CSIR - National Chemical Laboratory, Pune
Daniele Saheb
Jan Huang
  • University of Massachusetts Lowell
Lih-Sheng Turng
  • University of Wisconsin–Madison
Evan Mitsoulis
  • National Technical University of Athens