Advances in Marine Biology

Published by Elsevier
Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global change. This was the motivation to review our knowledge on the stress ecology of a benthic key player, the macroalgal genus Fucus. We first provide a comprehensive review of the genus as an ecological model including what is currently known about the major lineages of Fucus species with respect to hybridization, ecotypic differentiation and speciation; as well as life history, population structure and geographic distribution. We then review our current understanding of both extrinsic (abiotic/biotic) and intrinsic (genetic) stress(es) on Fucus species and how they interact with each other.
Although abiotic factors may be important first-order filters dictating which sponge species can thrive at a particular site, ecological interactions can play substantial roles influencing distribution and abundance, and thus diversity. Ecological interactions can modify the influences of abiotic factors both by further constraining distribution and abundance due to competitive or predatory interactions and by expanding habitat distribution or abundance due to beneficial interactions that ameliorate otherwise limiting circumstances. It is likely that the importance of ecological interactions has been greatly underestimated because they tend to only be revealed by experiments and time-series observations in the field.
Coral bleaching, i.e., loss of most of the symbiotic zooxanthellae normally found within coral tissue, has occurred with increasing frequency on coral reefs throughout the world in the last 20 years, mostly during periods of El Nino Southern Oscillation (ENSO). Experiments and observations indicate that coral bleaching results primarily from elevated seawater temperatures under high light conditions, which increases rates of biochemical reactions associated with zooxanthellar photosynthesis, producing toxic forms of oxygen that interfere with cellular processes. Published projections of a baseline of increasing ocean temperature resulting from global warming have suggested that annual temperature maxima within 30 years may be at levels that will cause frequent coral bleaching and widespread mortality leading to decline of corals as dominant organisms on reefs. However, these projections have not considered the high variability in bleaching response that occurs among corals both within and among species. There is information that corals and their symbionts may be capable of acclimatization and selective adaptation to elevated temperatures that have already resulted in bleaching resistant coral populations, both locally and regionally, in various areas of the world. There are possible mechanisms that might provide resistance and protection to increased temperature and light. These include inducible heat shock proteins that act in refolding denatured cellular and structural proteins, production of oxidative enzymes that inactivate harmful oxygen radicals, fluorescent coral pigments that both reflect and dissipate light energy, and phenotypic adaptations of zooxanthellae and adaptive shifts in their populations at higher temperatures. Such mechanisms, when considered in conjunction with experimental and observational evidence for coral recovery in areas that have undergone coral bleaching, suggest an as yet undefined capacity in corals and zooxanthellae to adapt to conditions that have induced coral bleaching. Clearly, there are limits to acclimatory processes that can counter coral bleaching resulting from elevated sea temperatures, but scientific models will not accurately predict the fate of reef corals until we have a better understanding of coral-algal acclimatization/adaptation potential. Research is particularly needed with respect to the molecular and physiological mechanisms that promote thermal tolerance in corals and zooxanthellae and identification of genetic characteristics responsible for the variety of responses that occur in a coral bleaching event. Only then will we have some idea of the nature of likely responses, the timescales involved and the role of 'experience' in modifying bleaching impact.
3 Modes of microbial symbiont transmission illustrated for a hypothetical sponge. The white ovals represent mitochondria, while circles, triangles, and squares represent symbiotic microbes. (A) Under obligate vertical transmission, the symbiont is inherited maternally along with the mitochondria, leading to genetic coupling of mitochondrial and symbiont genotypes. (B) Under horizontal transmission, symbionts are acquired anew in each generation, decoupling the cytoplasmic organelles from symbiont genotypes. Furthermore , infections involving environmental bacteria will likely lead to mixed symbiont genotypes within a host and differences among hosts over time and space. (C) Leaky vertical transmission is predominantly vertical with occasional environmental acquisition, or vertical with massive environmental swamping. In either case, the vertical transmission component will create a small lag time in the decoupling of host mitochondrial and symbiont genotypes. The horizontal component, depending how prevalent, can create mixed genotype infections . Figure adapted from Vrijenhoek (2010).  
4 Filamentous cyanobacterial symbionts through different life stages of the marine sponge Xestospongia bocatorensis. Upper left, the adult sponge in situ; upper right, brood chambers on the underside of the sponge contain eggs and developing embryos; lower left, filaments of the symbiotic cyanobacterium Oscillatoria spongeliae colonize embryos of X. bocatorensis during development; lower right, a free-swimming larva with cyanobacterial filaments visible as chlorophyll autofluoresence.  
1 Increasing numbers of publications and citations in the field of sponge–microbe symbiosis, as measured through the citation reports of the Science Citation Index Expanded database (Institute for Scientific Information,, searching the " topic " field for the query " ((sponge or Porifera) and (bacteria* or microb*) and (symbio* )) " . (A) Annual number of publications from 1991 through May 2011. (B) Annual number of citations from 1991 through May 2011. Note that 2011 is only partially represented.  
6 Aplysina red band syndrome (ARBS). Left: an ARBS lesion spreading along a branch of the Caribbean rope sponge, Aplysina cauliformis (Photo by Dr. D. Gochfeld). Right: confocal image of a cross-section through the leading edge of the red band. Bright areas of this image are from chlorophyll autofluoresence. The filamentous cyanobacteria on the outer (left) surface of the sponge are putative agents of ARBS, while the unicellular cyanobacteria inside the sponge are Synechococcus spongiarum.  
7 Percent 13 C in sponge and bacterial cell fractions from initial collections (provided for reference) and 6-h incubations in dark, shade, or light treatments. Bars represent means AE standard errors from n ¼ 3 individual sponges per treatment; different letters above bars indicate significantly different means across treatments (dark, shade, and light). Analyses of variance were conducted separately for each species, blocked by individual sponges, and considered treatments and fractions (bacterial cells vs. sponge cells) as effects. For Aplysina cauliformis, only a treatment effect was significant (F 2,8 ¼ 8.885, P ¼ 0.009), with holobionts held in full light incorporating significantly more 13 C than sponges held in darkness. For A. fulva, significant effects were observed for fractions (F 1,9 ¼ 12.734, P ¼ 0.006) and treatments (F 2,9 ¼ 19.816, P ¼ 0.001), with holobionts in shade or light showing greater 13 C incorporation than those in darkness, and bacteria cells in shade or light showing greater 13 C incorporation than sponge cells. These data suggest that the symbionts of A. cauliformis translocate carbon to host cells at a faster rate than those of A. fulva.  
Sponges can host abundant and diverse communities of symbiotic microorganisms. In this chapter, we review recent work in the area of sponge-microbe symbioses, focusing on (1) the diversity of these associations, (2) host specificity, (3) modes of symbiont transmission, and (4) the positive and negative impacts of symbionts on their hosts. Over the past 4 years, numerous studies have catalogued the diversity of sponge-microbe symbioses, challenging previous hypotheses of a uniform, vertically transmitted microbial community and supporting a mixed model of symbiont community transmission. We emphasize the need for experimental manipulations of sponge-symbiont interactions coupled with advanced laboratory techniques to determine the identity of metabolically active microbial symbionts, to investigate the physiological processes underlying these interactions, and to elucidate whether symbionts act as mutualists, commensals, or parasites. The amazing diversity of these complex associations continues to offer critical insights into the evolution of symbiosis and the impacts of symbiotic microbes on nutrient cycling and other ecosystem functions.
Aggregations of organisms, ranging from zooplankton to whales, are an extremely common phenomenon in the pelagic zone; perhaps the best known are fish schools. Social aggregation is a special category that refers to groups that self-organize and maintain cohesion to exploit benefits such as protection from predators, and location and capture of resources more effectively and with greater energy efficiency than could a solitary individual. In this review we explore general aggregation principles, with specific reference to pelagic organisms; describe a range of new technologies either designed for studying aggregations or that could potentially be exploited for this purpose; report on the insights gained from theoretical modelling; discuss the relationship between social aggregation and ocean management; and speculate on the impact of climate change. Examples of aggregation occur in all animal phyla. Among pelagic organisms, it is possible that repeated co-occurrence of stable pairs of individuals, which has been established for some schooling fish, is the likely precursor leading to networks of social interaction and more complex social behaviour. Social network analysis has added new insights into social behaviour and allows us to dissect aggregations and to examine how the constituent individuals interact with each other. This type of analysis is well advanced in pinnipeds and cetaceans, and work on fish is progressing. Detailed three-dimensional analysis of schools has proved to be difficult, especially at sea, but there has been some progress recently. The technological aids for studying social aggregation include video and acoustics, and have benefited from advances in digitization, miniaturization, motion analysis and computing power. New techniques permit three-dimensional tracking of thousands of individual animals within a single group which has allowed novel insights to within-group interactions. Approaches using theoretical modelling of aggregations have a long history but only recently have hypotheses been tested empirically. The lack of synchrony between models and empirical data, and lack of a common framework to schooling models have hitherto hampered progress; however, recent developments in this field offer considerable promise. Further, we speculate that climate change, already having effects on ecosystems, could have dramatic effects on aggregations through its influence on species composition by altering distribution ranges, migration patterns, vertical migration, and oceanic acidity. Because most major commercial fishing targets schooling species, these changes could have important consequences for the dependent businesses.
Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to comprise a significant proportion of overall metabolic costs in marine organisms, accurate estimates of the energetic cost per unit of synthesised protein are important. Measured costs of protein metabolism are reviewed, and the very high variability in reported costs highlighted. Two major determinants of protein synthesis rates are the tissue concentration of RNA, often expressed as the RNA to protein ratio, and the RNA activity (k(RNA)). The effects of temperature, nutrition and developmental stage on RNA concentration and activity are considered. This chapter highlights our complete lack of knowledge of protein metabolism in many groups of marine organisms, and the fact we currently have only limited data for animals held under a narrow range of experimental conditions. The potential assistance that genomic methods may provide in increasing our understanding of protein metabolism is described.
Emerita is a burrowing mole crab or sand crab, adapted to life in wave-washed sandy beaches of temperate and tropical seas. The reproductive biology of this anomuran crab presents several peculiarities, all contributing to its adaptation to this harsh environmental niche. We discuss the following aspects: 1) sex ratio and size at sexual maturity, 2) neoteny and protandric hermaphroditism, 3) mating behaviour and sperm transfer strategy, 4) synchronisation of moulting and reproduction, 5) environmental impact on reproductive cycle and egg production, 6) biochemistry of yolk utilisation and energetics, 7) larval development, dispersal and settlement and 8) the value of Emerita as indicator species. These aspects are discussed in the light of the life history pattern, comprising a sedentary adult and pelagic larval phases. The successful colonisation of the physically challenging habitat of the sandy beach by Emerita is attributable largely to reproductive strategy and the larval developmental and recruitment pattern. Sensitivity to changing environmental conditions, including pollution, make this intertidal crab an indicator species for monitoring anthropogenic impact.
This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice-water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon.
Antipatharians, commonly known as black corals, are treasured by many cultures for medicinal purposes and to produce jewellery. Despite their economic and cultural importance, very little is known about the basic biology and ecology of black corals because most species inhabit deeper-water environments (>50m) which are logistically challenging to study. There has been a recent increase of studies focusing on antipatharians; however, these have not yet been comprehensively reviewed. This literature review seeks to summarize the available information on the biology and ecology of antipatharians. Although black corals occur throughout all oceans and from subtidal to abyssal depths, they are particularly common in tropical and subtropical regions at depths below 50m. Antipatharians are generally found in areas with hard substrates, low-light and strong currents. Under favourable conditions, some black coral species form dense aggregations to the point of becoming ecologically dominant. Zooplankton appears to be the major component of the diet of black corals, which feed as suspension feeders and use mucus and nematocysts to capture their prey. Previously categorized as azooxanthellate corals, recent research has revealed that many antipatharians appear capable of harbouring symbionts, but unlike other corals, dinoflagellates of the genus Symbiodinium are generally not important to the nutrition of black corals. Antipatharians reproduce through both sexual and asexual processes. In general, polyps and colonies are gonochoric, with fertilization and larval development likely occurring externally; however, to date antipatharian larvae have only been observed for a single species. Antipatharians are generally slow-growing and long-lived organisms with maximum longevities ranging from decades to millennia. Black corals are more abundant with depth, a pattern which has been hypothesized to avoid competition with obligate photosynthetic fauna. Additionally, antipatharians may compete for space by using sweeper tentacles and secondary metabolites. With the exception of a few predators such as gastropods and green sea turtles, antipatharians appear to be little impacted by predation. Like other corals, antipatharians can be habitat engineers of importance to a myriad of associated organisms including arthropods, annelids, echinoderms, mollusks, sponges and cnidarians, several of which are adapted to live exclusively on black corals. Given that most black coral species inhabit remote environments, our understanding of these organisms will depend on our ability to effectively sample and study them. Future collections, particularly in deeper waters (>50m), will be needed to determine whether antipatharian species have limited biogeographical distributions or whether this has simply been an artefact of low sampling efforts away from population centres and taxonomic uncertainties within this group. Additionally, biological and ecological studies require increased sample sizes because most information is currently derived from the examination of only a handful of specimens.
Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches following ‘nature as model’. Siliceous sponges are unique among silica-forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated ‘biosilica’ formation in marine demosponges, the involvement of further molecules in silica metabolism and their potential applications in nano-biotechnology and bio-medicine.
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
This review focuses on the history and management of the Iceland scallop fishery in Iceland, Greenland and Norway (including the Svalbard archipelago and the islands of Bjørnøya and Jan Mayen), with information on research into each stock. The start of the fishery in all these regions followed the discovery of virgin scallop beds made up of old, large specimens in very high densities. Despite the apparent similarity of original conditions, the fishery has followed very different trends in each region, with drastic declines in Iceland, Svalbard and Jan Mayen. The general biology of the Iceland scallop is summarised and compared with the biology of other North Atlantic species of pectinids. The Icelandic fishery dates from 1969. There was a steady decrease in catch from 1985, when >16,000 tonnes were caught. By 2004 the stock had declined to 35% of its average size during the period 1993-2000 and a zero quota was advised. This decline is thought to have resulted from overexploitation, combined with a protozoan infestation and increasing sea bottom temperature. Scallop dredging commenced in west Greenland in 1983. The stock is not very large, but fishing was driven by social factors. Catches ranged from 400 to 1,900 tonnes during the period 1988-1992 and from 1,200 to 2,600 tonnes since 1995. There are indications that each scallop bed is extensively dredged before the fleet moves on to new areas, but nevertheless catches have been rather stable over the past decade. The scallop stocks in Svalbard, Bjørnøya and Jan Mayen were depleted in three fishing seasons between 1985-1987, when up to 45,000 tonnes of scallops were dredged in a single season. Following a survey carried out in 1991, Bjørnøya was open to the fishery with a maximum quota of 2,000 tonnes, but the stock off Svalbard was found to be not large enough to sustain a fishery.
This chapter describes the development and current situation of the offshore shrimp fisheries in Iceland, Greenland, Svalbard, Jan Mayen and the Norwegian Barents Sea area, with information on the biology of Pandalus borealis and its relation to the environment. Some additional information about the inshore shrimp fisheries of Iceland and Greenland of relevance to this study is also included. The Icelandic offshore shrimp fishery started in 1975 and has formed between 68% and 94% of the annual catch of shrimp since 1984. Landings peaked at 66,000 tons in 1997. The offshore fleet increased threefold from 1983 to 1987, and catch per unit of effort doubled. The first signs of overfishing were detected in 1987, when the first total allowable catch (TAC) was set, and catches decreased during the next few years despite the discovery of new fishing grounds. Good recruitment allowed catches to rise steadily from 1990 to 1996. However, catches and stock index have decreased markedly since then, with a minimum catch for the period 1998-2003 of 21,500 tons in 2000. It has been suggested that predation by cod is an important factor affecting shrimp stock size, but mortality from predation is slightly lower than fishing mortality, so that the impact of fishing cannot be disregarded. The Greenland offshore shrimp fishery is one of the largest in the North Atlantic and it generates 90% of the export value of the country. The fishery started in 1970 in West Greenland with landings of 1200 tons, but since 1974 it has formed between 59% and 89% of the annual shrimp catch. In 2004, landings reached 113,000 tons and the fishable stock was estimated at 300,000 tons. The significant spatial expansion of the fishery from the original fishing grounds off the Disko Island area to all of the West coast south of 75 degrees N and the fleet improvement over the past three decades have made possible this spectacular growth. Other fishing grounds off the East coast have been fished since 1978, mostly by foreign vessels. Catches in this area oscillated between 5000 and 15,000 tons during the period 1980-2004. The main problem of the shrimp fishery in Greenland is its overlapping with nursery areas of redfish, Greenland halibut, cod and other groundfish species, some of which show declining trends of biomass and abundance. This led to the implementation in 2000 of sorting grids and laws that forbid fishing when the bycatch exceeds legal limits. However, it is likely that ecological processes only partially understood, such as the trophic web and hydrography of the area, greatly influence the stock abundance of the demersal community. The offshore Norwegian fishery started in 1973. The main fishing grounds are off Svalbard and in the Barents Sea. Catches at Jan Mayen have never exceeded 5% of the total annual catch of northern shrimp. Large fluctuations in catches and stock size are the main characteristic of this fishery. Stock size seems to be largely dependent on the annual hydrographic variability in the area and trends in abundance of predator species, especially cod. However, shrimp mortality due to predation has been estimated to be the same as fishing mortality, and therefore fishing probably accounts for part of the observed variability in stock size. Large populations of juvenile cod, haddock, redfish and Greenland halibut are often found on the shrimp fishing grounds. The implementation of sorting grids in 1991 and a bio-economical model in 1993 to estimate allowable maximum catches of the commercial bycatch species have not solved the bycatch problem. All the commercial fish species present on the shrimp grounds are currently below safe biological limits. This is the only fishery within the studied area that is not regulated by means of a TAC system.
The aim of this chapter is to review the biology and fishery, including the management, of European hake in the north-east Atlantic. The European hake is widely distributed throughout the north-east Atlantic, from Norway in the north to the Guinea Gulf in the south, and throughout the Mediterranean and Black Sea, being more abundant from the British Isles to the south of Spain. In this area, ICES (International Council for the Exploration of the Sea) recognises the existence of two stocks: the northern stock and the southern stock. Both stocks have been extensively and intensively harvested and since the beginning of the 90s have been considered to be outside safe biological limits. The northern stock, however, is currently considered to lie within safe biological limits. In any case, recovery plans were implemented for the northern stock in 2004 and for the southern stock in 2006. Despite its commercial importance, knowledge of the biology and ecology of the European hake in the North Atlantic is still quite scarce. For example, recent investigations suggest that European hake grows much faster, by a factor of two, than was considered previously. This faster growth also affects the maturity-at-age pattern of hake and the agreed maturity-at-age ogive used in the assessments. European hake is a top predator in the demersal community in the north-east Atlantic area; mainly preying on blue whiting, horse mackerel and other cupleids. In relation to the reproductive biology, European hake is considered to be a batch spawner species with indeterminate fecundity and spawning activity all year round. All these characteristics could, in turn, be interpreted as European hake adopting a more opportunistic life strategy, which is unusual for a gadoid and demersal species, and raises several questions about hake biology and ecology that require further investigation.
During the course of the last century, populations of Atlantic cod Gadus morhua L. have undergone dramatic declines in abundance across their biogeographic range, leading to debate about the relative roles of climatic warming and overfishing in driving these changes. In this chapter, we describe the geographic distributions of this important predator of North Atlantic ecosystems and document extensive evidence for limitations of spatial movement and local adaptation from population genetic markers and electronic tagging. Taken together, this evidence demonstrates that knowledge of spatial population ecology is critical for evaluating the effects of climate change and commercial harvesting. To explore the possible effects of climate change on cod, we first describe thermal influences on individual physiology, growth, activity and maturation. We then evaluate evidence that temperature has influenced population-level processes including direct effects on recruitment through enhanced growth and activity, and indirect effects through changes to larval food resources. Although thermal regimes clearly define the biogeographic range of the species, and strongly influence many aspects of cod biology, the evidence that population declines across the North Atlantic are strongly linked to fishing activity is now overwhelming. Although there is considerable concern about low spawning stock biomasses, high levels of fishing activity continues in many areas. Even with reduced fishing effort, the potential for recovery from low abundance may be compromised by unfavourable climate and Allee effects. Current stock assessment and management approaches are reviewed, alongside newly advocated methods for monitoring stock status and recovery. However, it remains uncertain whether the rebuilding of cod to historic population sizes and demographic structures will be possible in a warmer North Atlantic.
The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.
Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20–40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves.
The basking shark Cetorhinus maximus is the world's second largest fish reaching lengths up to 12 m and weighing up to 4 tonnes. It inhabits warm-temperate to boreal waters circumglobally and has been the subject of fisheries exploitation for at least 200 years. There is current concern over its population levels as a consequence of directed harpoon and net fisheries that in the north-east Atlantic Ocean alone took over 100,000 mature individuals between 1946 and 1997. As a consequence, it is not known whether populations are recovering or are at a fraction of their historical, pre-fishing biomass. They are currently Red-listed as vulnerable globally, and endangered in the north-east Atlantic. The basking shark is one of only three shark species that filter seawater for planktonic prey and this strategy dominates key aspects of its life history. Until recently, very little was known about the biology, ecology and behaviour of this elusive species. The advent of satellite-linked electronic tags for tracking has resulted in considerable progress in furthering our understanding of basking shark behaviour, foraging, activity patterns, horizontal and vertical movements, migrations and broader scale distributions. Genetic studies are also beginning to reveal important insights into aspects of their global population structure, behaviour and evolutionary history. This chapter reviews the taxonomy, distribution and habitat, bionomics and life history, behaviour, population structure, exploitation, management and conservation status of the basking shark. In doing so, it reveals that whilst important behavioural and ecological information has been gained, there are still considerable gaps in knowledge. In particular, these relate to the need to resolve population sizes, spatial dynamics such as population sub-structuring and sexual segregation, the critical habitats occupied by pregnant females, and the distribution and scale of fishery by-catch rates. Although challenging, it is arguable that without achieving these goals the conservation status of the basking shark will be difficult to assess accurately.
We summarize what is known of the biophysical interactions that control vertical migration and dispersal of decapod larvae, asking the following main questions: How common is vertical migration in decapod crustacean larvae? What is the vertical extent of the migrations? What are the behavioural mechanisms that control vertical migrations? How does vertical migration interact with the physics of the ocean to control the dispersal of larvae? These questions are analysed by first giving a synopsis of the physical processes that are believed to significantly affect horizontal transport, and then by describing migration patterns according to taxon, to ecological category based on the habitat of adults and larvae, and to stage within the larval series.
Sexual segregation occurs when members of a species separate such that the sexes live apart, either singly or in single-sex groups. It can be broadly categorised into two types: habitat segregation and social segregation. Sexual segregation is a behavioural phenomenon that is widespread in the animal kingdom yet the underlying causes remain poorly understood. Sexual segregation has been widely studied among terrestrial mammals such as ungulates, but it has been less well documented in the marine environment. This chapter clarifies terms and concepts which have emerged from the investigation of sexual segregation in terrestrial ecology and examines how a similar methodological approach may be complicated by differences of marine species. Here we discuss the behavioural patterns of sexual segregation among marine fish, reptile, bird and mammal species. Five hypotheses have been forwarded to account for sexual segregation, largely emerging from investigation of sexual segregation in terrestrial ungulates: the predation risk, forage selection, activity budget, thermal niche-fecundity and social factors hypotheses. These mechanisms are reviewed following careful assessment of their applicability to marine vertebrate species and case studies of marine vertebrates which support each mechanism recounted. Rigorous testing of all hypotheses is lacking from both the terrestrial and marine vertebrate literature and those analyses which have been attempted are often confounded by factors such as sexual body-size dimorphism. In this context, we indicate the value of studying model species which are monomorphic with respect to body size and discuss possible underlying causes for sexual segregation in this species. We also discuss why it is important to understand sexual segregation, for example, by illustrating how differential exploitation of the sexes by humans can lead to population decline.
The prototype of Meganyctiphanes norvegica diel vertical migration (DVM) behaviour comprises ascent around dusk, feeding near the surface at night, and descent at dawn, explained as a trade-off between feeding and predator avoidance in an environment where both food and risk of predation is highest near surface. Light is the proximate cue, and daytime distribution is deeper in clear waters and sunny weather and nocturnal distributions deeper in moonlight. However, both internal state and external factors further affect and modify the diel migration pattern. While Meganyctiphanes migrates in synchrony to the surface at sunset, part of the population may descend soon after the ascent with individuals re-entering upper layers throughout the night. This has been explained with hungry individuals being prone to take larger risks and hence stay shallower, while satiated individuals seek shelter at depth. Females migrate closer to the surface than males of equivalent size, possibly due to their greater demand for energy to fuel egg production. Freshly moulted M. norvegica remain at depth throughout the diel cycle. This has been related to the fact that that krill do not feed during moulting, to reduced swimming capacity, and as a mechanism to avoid cannibalism whilst in a vulnerable condition. In some locations large parts of the population remain at depth at night. Such behaviour may incur access to demersal food sources, provide avoidance of predators, or can be a means to avoid horizontal transport to adjacent, unfavourable areas.
The behaviour of planktonic animals remains poorly understood due to the difficulty of observing them in situ without influencing their behaviour. Here we review experiments on the behavioural responses of Northern krill, Meganyctiphanes norvegica (and related organisms), in isolation in laboratory-based aquaria. The value of this approach lies in the close observation that is possible; the downside is the uncertainty as to how well the observed behaviour relates to the natural behaviour of the subject animal. We discuss studies of swimming and swarming, and the responses of krill to light. We consider techniques involving automatic recordings that avoid, to some extent, making subjective decisions on behaviour. The effects of isolation of such a gregarious animal and of exposure to unnaturally high light levels are also considered. We conclude that such experiments can be of great value as long as these limiting factors are addressed.
The Norway lobster is one of the most important commercial crustaceans in Europe. A detailed knowledge of the behaviour of this species is crucial in order to optimize fishery yields, improve sustainability of fisheries, and identify man-made environmental threats. Due to the cryptic life-style in burrows, the great depth and low-light condition of their habitat, studies of the behaviour of this species in its natural environment are challenging. Here, we first provide an overview of the sensory modalities (vision, chemoreception, and mechanoreception) of Nephrops norvegicus. We focus particularly on the role of the chemical and mechanical senses in eliciting and steering spatial orientation behaviours. We then concentrate on recent research in social behaviour and biological rhythms of Nephrops. A combination of laboratory approaches and newly developed tracking technologies has led to a better understanding of aggressive interactions, reproductive behaviours, activity cycles, and burrow-related behaviours. Gaps in our knowledge are identified and suggestions for future research are provided.
Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).
Foraminiferal research lies at the border between geology and biology. Benthic foraminifera are a major component of marine communities, highly sensitive to environmental influences, and the most abundant benthic organisms preserved in the deep-sea fossil record. These characteristics make them important tools for reconstructing ancient oceans. Much of the recent work concerns the search for palaeoceanographic proxies, particularly for the key parameters of surface primary productivity and bottom-water oxygenation. At small spatial scales, organic flux and pore-water oxygen profiles are believed to control the depths at which species live within the sediment (their 'microhabitats'). Epifaunal/shallow infaunal species require oxygen and labile food and prefer relatively oligotrophic settings. Some deep infaunal species can tolerate anoxia and are closely linked to redox fronts within the sediment; they consume more refractory organic matter, and flourish in relatively eutrophic environments. Food and oxygen availability are also key factors at large (i.e. regional) spatial scales. Organic flux to the sea floor, and its seasonality, strongly influences faunal densities, species compositions and diversity parameters. Species tend to be associated with higher or lower flux rates and the annual flux range of 2-3 g Corg m-2 appears to mark an important faunal boundary. The oxygen requirements of benthic foraminifera are not well understood. It has been proposed that species distributions reflect oxygen concentrations up to fairly high values (3 ml l-1 or more). Other evidence suggests that oxygen only begins to affect community parameters at concentrations < 0.5 ml l-1. Different species clearly have different thresholds, however, creating species successions along oxygen gradients. Other factors such as sediment type, hydrostatic pressure and attributes of bottom-water masses (particularly carbonate undersaturation and current flow) influence foraminiferal distributions, particularly on continental margins where strong seafloor environmental gradients exist. Epifaunal species living on elevated substrata are directly exposed to bottom-water masses and flourish where suspended food particles are advected by strong currents. Biological interactions, e.g. predation and competition, must also play a role, although this is poorly understood and difficult to quantify. Despite often clear qualitative links between environmental and faunal parameters, the development of quantitative foraminiferal proxies remains problematic. Many of these difficulties arise because species can tolerate a wide range of non-optimal conditions and do not exhibit simple relationships with particular parameters. Some progress has been made, however, in formulating proxies for organic fluxes and bottom-water oxygenation. Flux proxies are based on the Benthic Foraminiferal Accumulation Rate and multivariate analyses of species data. Oxygen proxies utilise the relative proportions of epifaunal (oxyphilic) and deep infaunal (low-oxygen tolerant) species. Yet many problems remain, particularly those concerning the calibration of proxies, the closely interwoven effects of oxygen and food availability, and the relationship between living assemblages and those preserved in the permanent sediment record.
The fish farming industry suffers significantly from the effects of biofouling. The fouling of cages and netting, which is costly to remove, is detrimental to fish health and yield and can cause equipment failure. With rapid expansion of the aquaculture industry, coupled with the tightening of legislation on the use of antifouling biocides, the problems of fish farm biofouling are increasing. The nature of the biological communities that develop on fish farm equipment and the antifouling practices that can be employed to reduce it are described here. Particular emphasis is placed on antifouling legislature and the future needs of the industry. The biological communities that develop on fish cages and netting are distinctive, in comparison to those that foul ships. Temperate species of particular importance, because of their cosmopolitan distribution and opportunistic nature, include the blue mussel Mytilus edulis and the ascidian Ciona intestinalis. Antifouling practices include predominantly the use of copper-based antifoulant coatings, in combination with practical fish husbandry and site management practices. The antifouling solutions presently available are not ideal, and it is widely accepted that there is an urgent need for research into combatant technologies. Such alternatives include the adoption of "foul-release" technologies and "biological control" through the use of polyculture systems. However, none of these have, as yet, been proven satisfactory. In view of current legislative trends and the possible future "phasing out" of available antifouling materials, there is a need to find alternative strategies.
A review is given of (mainly recent) work on the biodiversity, ecology, biogeography and practical importance of marine parasites. Problems in estimating species numbers have been thoroughly discussed for free-living species, and the main points of these discussions are reviewed here. Even rough estimates of the richness of most parasite groups in the oceans are premature for the following reasons: species numbers of host groups, in particular in the deep sea and the meiofauna, are not known; most host groups have been examined only insufficiently for parasites or not at all; even in some of the best known groups, latitudinal, longitudinal and depth gradients in species richness are only poorly understood or not known at all, effects of hosts on parasite morphology and geographical variation have been studied only in a few cases; there are few studies using techniques of molecular biology to distinguish sibling species. Estimates of species richness in the best known groups, trematodes, monogeneans and copepods of marine fishes, are given. Parasites are found in almost all taxa of eukaryotes, but most parasitic species are concentrated in a few taxa.
Coral reef communities face unprecedented pressures on local, regional and global scales as a consequence of climate change and anthropogenic disturbance. Optical remote sensing, from satellites or aircraft, is possibly the only means of measuring the effects of such stresses at appropriately large spatial scales (many thousands of square kilometres). To map key variables such as coral community structure, percentages of living coral or percentages of dead coral, a remote sensing instrument must be able to distinguish the reflectance spectra (i.e. “spectral signature”, reflected light as a function of wavelength) of each category. For biotic classes, reflectance is a complex function of pigmentation, structure and morphology. Studies of coral “colour” fall into two disparate but potentially complementary types. Firstly, biological studies tend to investigate the structure and significance of pigmentation in reef organisms. These studies often lack details that would be useful from a remote sensing perspective such as intraspecific variation in pigment concentration or the contribution of fluorescence to reflectance. Secondly, remote sensing studies take empirical measurements of spectra and seek wavelengths that discriminate benthic categories. Benthic categories used in remote sensing sometimes consist of species groupings that are biologically or spectrally inappropriate (e.g. merging of algal phyla with distinct pigments). Here, we attempt to bridge the gap between biological and remote sensing perspectives of pigmentation in reef taxa. The aim is to assess the extent to which spectral discrimination can be given a biological foundation, to reduce the ad hoc nature of discriminatory criteria, and to understand the fundamental (biological) limitations in the spectral separability of biotic classes.
This review is based on integrated studies of the composition, structure and function of shallow-water ecosystems in the western Pacific that are influenced by underwater gas-hydrothermal activity. Most of the data were collected from 1985 to 1997 by the Institute of Marine Biology of the Far East Branch of the Russian Academy of Science during expeditions to zones of modern volcanism. Gas-hydrothermal activity of volcanoes has a great influence on the physicochemical characteristics of the water column and plankton, and of bottom sediment and benthic communities. The abundance of nutrients (SiO(3)(2-), PO(4)(3-), NO(3)(-)), gases (CO(2), CH(4), H(2), H(2)S) and other reduced compounds (C(n)H(n), S(0), S(2)O(3)(2-), NH(4)(+)) in zones of shallow-water hydrothermal vents provides conditions for the use of two energy sources for primary production: sunlight (photosynthesis) and the oxidation of reduced compounds (bacterial chemosynthesis). In areas of shallow-water volcanic activity, chemosynthesis occurs not only in the immediate vicinity of venting fluid release but also in the surface layer of the water column, where it occurs together with intense photosynthesis. This surface photosynthesis is found below the layer of chemosynthesis, which is related to the distribution of hydrothermal fluids at the water surface. The contribution of each of these processes to total primary production depends on the physical and chemical conditions created by the vents and on the range and adaptation potential of the organisms. On the seabed in zones of shallow-water venting, microorganisms form mats that consist of bacteria of various physiological groups, microalgae, the products of their metabolism and sedimentary particles. Oxygenic photosynthesis of benthic diatoms, bacterial photosynthesis (anoxygenic photosynthesis) and autotrophic chemosynthesis in algobacterial and bacterial mats generate organic matter additional to that produced in the water column. The high rates of primary production, abundance of organic matter in the water column and intense development of benthic microflora ensure the formation of an abundant benthic fauna. In Kraternaya Bight, Matupi Harbour and Bay of Plenty, the macrozoobenthos has low species diversity. The taxonomic composition of the populations is determined by geographical region (temperate or tropical), by the character of the seabed (hard or soft bottoms, rigid lava flows or hydrothermal structures), by the temperature of bottom sediments and of volcanic fluids and lastly by the chemical composition of the vent fluid (sulfide or nonsulfide). In most of the surveyed areas the fauna is derived from locally common species or from opportunistic species that can form high-density populations in eutrophic waters. The benthic communities of shallow-water venting areas have many characteristics in common with communities subject to anthropogenic impact (thermal, residential or industrial) or to changes resulting from a sharp deterioration of the marine environment. In contrast to the fauna of deeper water hydrothermal communities (i.e., those that exist below 200 m), shallow-water venting communities lack obligate hydrothermal species. The structure and function of the pelagic and benthic communities in areas of shallow-water venting can be regarded as transitional between those of deep-water vent communities and the normal communities of the coast.
This chapter provides a background to research on Northern krill biology, starting with a description of its morphology and identifying features, and the historical path to its eventual position as a single-species genus. There is a lack of any euphausiid fossil material, so phylogenetic analysis has relied on comparative morphology and ontogeny and, more recently, genetic methods. Although details differ, the consensus of these approaches is that Meganyctiphanes is most closely related to the genus Thysanoessa. The light organs (or photophores) are well developed in Northern krill and the control of luminescence in these organs is described. A consideration of the distribution of the species shows that it principally occupies shelf and slope waters of both the western and eastern coasts of the North Atlantic, with a southern limit at the boundary with sub-tropical waters (plus parts of the Mediterranean) and a northern limit at the boundary with Arctic water masses. Recent evidence of a northward expansion of these distributional limits is considered further. There have been a variety of techniques used to sample and survey Northern krill populations for a variety of purposes, which this chapter collates and assesses in terms of their effectiveness. Northern krill play an important ecological role, both as a contributor to the carbon pump through the transport of faecal material to the deeper layers, and as a key prey item for groundfish, squid, baleen whales, and seabirds. The commercial exploitation of Northern krill has been slow to emerge since its potential was considered by Mauchline [Mauchline, J (1980). The biology of mysids and euphausiids. Adv. Mar. Biol. 18, 1-681]. However, new uses for products derived from krill are currently being found, which may lead to a new wave of exploitation.
Irukandji stings are a leading occupational health and safety issue for marine industries in tropical Australia and an emerging problem elsewhere in the Indo-Pacific and Caribbean. Their mild initial sting frequently results in debilitating illness, involving signs of sympathetic excess including excruciating pain, sweating, nausea and vomiting, hypertension and a feeling of impending doom; some cases also experience acute heart failure and pulmonary oedema. These jellyfish are typically small and nearly invisible, and their infestations are generally mysterious, making them scary to the general public, irresistible to the media, and disastrous for tourism. Research into these fascinating species has been largely driven by the medical profession and focused on treatment. Biological and ecological information is surprisingly sparse, and is scattered through grey literature or buried in dispersed publications, hampering understanding. Given that long-term climate forecasts tend toward conditions favourable to jellyfish ecology, that long-term legal forecasts tend toward increasing duty-of-care obligations, and that bioprospecting opportunities exist in the powerful Irukandji toxins, there is a clear need for information to help inform global research and robust management solutions. We synthesise and contextualise available information on Irukandji taxonomy, phylogeny, reproduction, vision, behaviour, feeding, distribution, seasonality, toxins, and safety. Despite Australia dominating the research in this area, there are probably well over 25 species worldwide that cause the syndrome and it is an understudied problem in the developing world. Major gaps in knowledge are identified for future research: our lack of clarity on the socio-economic impacts, and our need for time series and spatial surveys of the species, make this field particularly enticing.
Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as well as experimental work on choanocyte morphology and function. Special attention is given to pinacocyte epithelia, cell junctions, and the molecules present in sponge epithelia. Studies describing the role of the pinacoderm in sensing, coordination, and secretion are reviewed. A wealth of recent work describes gene presence and expression patterns in sponge tissues during development, and we review this in the context of the previous descriptions of sponge morphology and physiology. A final section addresses recent findings of genes involved in the immune response. This review is far from exhaustive but intends rather to revisit for non-specialists key aspects of sponge morphology and physiology in light of new molecular data as a means to better understand and interpret sponge form and function today.
Recent literature on embryonic and post-embryonic development, biology and behavioural ecology of juvenile cephalopods is reviewed. Emphasis is placed on biological processes. Life-history patterns and phylogenetic systematics, which are important for a proper understanding of the evolutionary history of the cephalopods, are only briefly touched upon. Egg sizes in cephalopods range from less than 1 mm to about 30 mm in diameter, so the hatchlings emerging from the largest eggs are bigger than the adults of pygmy squid, the smallest known cephalopods. Developmental durations from spawning to hatching range from a few days (for very small eggs developing at high temperatures) to one or possibly several years (for very large eggs developing at low temperatures). Such important differences notwithstanding, the morphogenetic processes are very similar in all cephalopod embryos, the major variant being the size of the so-called outer yolk sac, which may be rudimentary in extremely small embryos. Several questions concerning the timing of hatching in relation to the developmental stage attained, especially in terms of yok absorption, need clarification. These questions concern the elimination of the transient closure of the mouth, the final differentiation of digestive gland cells, and the removal of the tranquilliser effect of the perivitelline fluid necessary for the onset of the hatching behaviour. Cephalopod hatchlings are active predators. They refine their behavioural repertoires by learning from individual experience in dealing with prey and would-be predators. There is no truly larval phase, and the ecologically defined term paralarva should be used with caution. Given the considerable resource potential of cephalopods, investigations into dispersal and recruitment are of particular interest to fishery biology, but they are also important for ecological biogeography. The related studies of feeding and growth involve field sampling and tentative age determination of caught specimens, in combination with laboratory studies to test food quality, measure feeding rates, and validation of periodicities in accretional growth structures (e.g. "daily rings" in statoliths).
The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.
As the most ancient extant metazoans, glass sponges (Hexactinellida) have attracted recent attention in the areas of molecular evolution and the evolution of conduction systems but they are also interesting because of their unique histology: the greater part of their soft tissue consists of a single, multinucleate syncytium that ramifies throughout the sponge. This trabecular syncytium serves both for transport and as a pathway for propagation of action potentials that trigger flagellar arrests in the flagellated chambers. The present chapter is the first comprehensive modern account of this group and covers work going back to the earliest work dealing with taxonomy, gross morphology and histology as well as dealing with more recent studies. The structure of cellular and syncytial tissues and the formation of specialised intercellular junctions are described. Experimental work on reaggregation of dissociated tissues is also covered, a process during which histocompatibility, fusion and syncytialisation have been investigated, and where the role of the cytoskeleton in tissue architecture and transport processes has been studied in depth. The siliceous skeleton is given special attention, with an account of discrete spicules and fused silica networks, their diversity and distribution, their importance as taxonomic features and the process of silication. Studies on particle capture, transport of internalised food objects and disposal of indigestible wastes are reviewed, along with production and control of the feeding current. The electrophysiology of the conduction system coordinating flagellar arrests is described. The review covers salient features of hexactinellid ecology, including an account of habitats, distribution, abundance, growth, seasonal regression, predation, mortality, regeneration, recruitment and symbiotic associations with other organisms. Work on the recently discovered hexactinellid reefs of Canada's western continental shelf, analogues of long-extinct Jurassic sponge reefs, is given special attention. Reproductive biology is another area that has benefited from recent investigations. Seasonality, gametogenesis, embryogenesis, differentiation and larval biology are now understood in broad outline, at least for some species. The process whereby the cellular early larva becomes syncytial is described. A final section deals with the classification of recent and fossil glass sponges, phylogenetic relationships within the Hexactinellida and the phylogenetic position of the group within the Porifera. Palaeontological aspects are covered in so far as they are relevant to these topics.
8 Log catch of C. magister megalopae caught annually versus commercial catch in Central California (south of Sonoma Country), Northern California (Sonoma County north), Oregon and Washington (Shanks, in press). Commercial catch is lagged 4 years after settlement season except for Washington where it is lagged by 5 years. Dotted lines and statistics are the results of regressions. The filled circle in Northern California is an outlier that was excluded from analysis. 
7 Annual revenue (top panel) inflated to 2012 USD value and annual catch (bottom panel) for commercial fisheries in Washington from 1981 to 2011. (Pacific Fisheries Information Network (PacFIN) retrieval dated December 2012, Pacific States Marine Fisheries Commission, Portland, Oregon ( Arrows on the right side of the figure point to the area that represents C. magister . 
4 Number of boats and pots participating each year in the commercial C. magister fishery in Oregon. Note the dramatic increase in the effort (both pots and vessels) that occurred in the mid 1970s. This timing coincides with the federal plan to enhance U.S. fisheries following the establishment of the Exclusive Economic Zone (Gelchu and Pauly, 2007). Data on effort were spotty and thus are not presented here. 
6 Annual revenue (top panel) inflated to 2012 USD value and annual catch (bottom panel) for commercial fisheries in Oregon from 1981 to 2011. (Pacific Fisheries Information Network (PacFIN) retrieval dated December 2012, Pacific States Marine Fisheries Commission, Portland, Oregon ( Arrows on the right side of the figure point to the area that represents C. magister . 
The Dungeness crab, Cancer magister, is a commercially important crustacean that ranges from the Pribilof Islands, Alaska, to Santa Barbara, California. Mating occurs between recently moulted females and post-moult males. After approximately 90 days, females release planktonic larvae into the water column. Stage-I zoea are found in the nearshore environment and subsequent zoeal stages are found at greater distances. After approximately 80 days, zoea moult into megalopa, which move first from the open ocean onto the continental shelf and then across the shelf to settle in the nearshore environment or estuaries. Crabs reach sexual maturity at 2-3 years of age. The fishery for C. magister is managed using a 3-S management strategy which regulates catch based on size, sex and season. As more fisheries seek sustainability certifications, the Dungeness crab fishery presents an excellent test case of how to sustainably manage a crustacean fishery.
Patagonian toothfish (Dissostichus eleginoides) is a large notothenioid fish that supports valuable fisheries throughout the Southern Ocean. D. eleginoides are found on the southern shelves and slopes of South America and around the sub-Antarctic islands of the Southern Ocean. Patagonian toothfish are a long-lived species (>50 years), which initially grow rapidly on the shallow shelf areas, before undertaking an ontogenetic migration into deeper water. Although they are active predators and scavengers, there is no evidence of large-scale geographic migrations, and studies using genetics, biochemistry, parasite fauna and tagging indicate a high degree of isolation between populations in the Indian Ocean, South Georgia and the Patagonian Shelf. Patagonian toothfish spawn in deep water (ca. 1000 m) during the austral winter, producing pelagic eggs and larvae. Larvae switch to a demersal habitat at around 100 mm (1-year-old) and inhabit relatively shallow water (<300 m) until 6-7 years of age, when they begin a gradual migration into deeper water. As juveniles in shallow water, toothfish are primarily piscivorous, consuming the most abundant suitably sized local prey. With increasing size and habitat depth, the diet diversifies and includes more scavenging. Toothfish have weakly mineralised skeletons and a high fat content in muscle, which helps neutral buoyancy, but limits swimming capacity. Toothfish generally swim with labriform motion, but are capable of more rapid sub-carangiform swimming when startled. Toothfish were first caught as a by-catch (as juveniles) in shallow trawl fisheries, but following the development of deep water longlining, fisheries rapidly developed throughout the Southern Ocean. The initial rapid expansion of the fishery, which led to a peak of over 40,000 tonnes in reported landings in 1995, was accompanied by problems of bird by-catch and overexploitation as a consequence of illegal, unreported and unregulated fishing (IUU). These problems have now largely been addressed, but continued vigilance is required to ensure that the species is sustainably exploited and the ecosystem effects of the fisheries are minimised.
The human p53 tumour suppressor protein is inactivated in many cancers and is also a major player in apoptotic responses to cellular stress. The p53 protein and the two other members of this protein family (p63, p73) are encoded by distinct genes and their functions have been extensively documented for humans and some other vertebrates. The structure and relative expression levels for members of the p53 superfamily have also been reported for most major invertebrate taxa. The functions of homologous proteins have been investigated for only a few invertebrates (specifically, p53 in flies, nematodes and recently a sea anemone). These studies of classical model organisms all suggest that the gene family originally evolved to mediate apoptosis of damaged germ cells or to protect germ cells from genotoxic stress. Here, we have correlated data from a number of molluscan and other invertebrate sequencing projects to provide a framework for understanding p53 signalling pathways in marine bivalve cancer and stress biology. These data suggest that (a) the two identified p53 and p63/73-like proteins in soft shell clam (Mya arenaria), blue mussel (Mytilus edulis) and Northern European squid (Loligo forbesi) have identical core sequences and may be splice variants of a single gene, while some molluscs and most other invertebrates have two or more distinct genes expressing different p53 family members; (b) transcriptional activation domains (TADs) in bivalve p53 and p63/73-like protein sequences are 67-69% conserved with human p53, while those in ecdysozoan, cnidarian, placozoan and choanozoan eukaryotes are ≤33% conserved; (c) the Mdm2 binding site in the transcriptional activation domain is 100% conserved in all sequenced bivalve p53 proteins (e.g. Mya, Mytilus, Crassostrea and Spisula) but is not present in other non-deuterostome invertebrates; (d) an Mdm2 homologue has been cloned for Mytilus trossulus; (e) homologues for both human p53 upstream regulatory and transcriptional target genes exist in molluscan genomes (missing are ARF, CIP1 and BH3 only proteins) and (f) p53 is demonstrably involved in bivalve haemocyte and germinoma cancers. We usually do not know enough about the molecular biology of marine invertebrates to address molecular mechanisms that characterize particular diseases. Understanding the molecular basis of naturally occurring diseases in marine bivalves is a virtually unexplored aspect of toxicoproteomics and genomics and related drug discovery. Additionally, increases in coastal development and concomitant increases in aquatic pollutants have driven interest in developing models appropriate for evaluating potential hazardous compounds or conditions found in the aquatic environment. Data reviewed in this study are coupled with recent developments in our understanding the molecular biology of the marine bivalve p53 superfamily. Taken together, they suggest that both structurally and functionally, bivalve p53 family proteins are the most highly conserved members of this gene superfamily so far identified outside of higher vertebrates and invertebrate chordates. Marine bivalves provide some of the most relevant and best understood models currently available for experimental studies by biomedical and marine environmental researchers.
This chapter discusses the taxonomy, phylogeny, biogeography, ecology, and reproductive biology of deep-sea octocorals and also focuses on gorgonian octocorals because they are the predominant octocoral group in the deep sea. The most widely accepted taxonomic scheme for octocorals divides the subclass into four orders: (1) helioporacea, (2) alcyonacea, (3) gorgonacea, and (4) pennatulacea. The distinctions between most orders and suborders are blurred by intermediate taxa that resulted in a continuum of colonial organization and skeletal structure. The major areas of study of deep-sea gorgonians and sources of species descriptions are also summarized. Octocorals have been known from deep water in the North Atlantic, although the Challenger expedition showed that octocorals could be found in the depths of all oceans. Knowledge of deep-water octocorals of the Indo-West Pacific region is meagre and contrasts with the wealth of information on shallow-water taxa. The distribution of the three major deep-sea families' discussed are––chrysogorgiidae, isididae, and primnoidae. Deep-sea octocoral colonies are often large so it offers a wide range of biogenic habitats to other invertebrate species. The chapter also focuses on those invertebrate species that are found most frequently on the octocoral host. Reproduction, growth, age, food habits, and conservation issues are also considered.
Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along a growing edge or branch tip, and by the reattachment, regeneration and repair of damaged or broken colony fragments. The physiological and ecological responses of species of millepores are similar to those of the species of scleractinian corals over a broad range of natural and anthropogenic disturbances. Severe damage to colonies may occur during major storms. Delicately branching species are more susceptible than massive and bladed species. The ability of broken fragments to regenerate can ameliorate the extent of damage. Widespread bleaching and mortality of millepores has been reported during mass bleaching events that have affected many coral reefs. Millepores are often the first to recover after short-term bleaching events. Harmful effects of oil spills, chronic oil pollution and oil-spill detergents have been widely reported for millepores. Although the hydrozoan coenosarc, with its fiercely stinging zooids, does not appear to be an attractive substratum for attachment and settlement of epizooans, a number of sessile and errant forms commonly occur on millepores. These include barnacles, amphipods, tanaid and alpheid crustaceans, polychaetes and gastropods. Burrowing molluscs, polychaetes and crustacea also abound. Many of these species or their close relatives also occur on scleractinian corals. A variety of predators, grazers and fouling organisms occur on millepores. These include errant polychaetes, several coral-feeding fish and a gastropod mollusc. Various invasive green, red and brown algae are widespread, growing on dead branches of millepores and overgrowing live coral tissue. Various "band diseases" associated with microorganisms that appear to cause lesions on millepores and loss of tissue have been documented but are not of widespread occurrence. Infestations of endolithic algae and fungi growing within the skeletons have been reported in a number of millepore species.
Sound is a primary sensory cue for most marine mammals, and this is especially true for cetaceans. To passively and actively acquire information about their environment, cetaceans have some of the most derived ears of all mammals, capable of sophisticated, sensitive hearing and auditory processing. These capabilities have developed for survival in an underwater world where sound travels five times faster than in air, and where light is quickly attenuated and often limited at depth, at night, and in murky waters. Cetacean auditory evolution has capitalized on the ubiquity of sound cues and the efficiency of underwater acoustic communication. The sense of hearing is central to cetacean sensory ecology, enabling vital behaviours such as locating prey, detecting predators, identifying conspecifics, and navigating. Increasing levels of anthropogenic ocean noise appears to influence many of these activities. Here, we describe the historical progress of investigations on cetacean hearing, with a particular focus on odontocetes and recent advancements. While this broad topic has been studied for several centuries, new technologies in the past two decades have been leveraged to improve our understanding of a wide range of taxa, including some of the most elusive species. This chapter addresses topics including how sounds are received, what sounds are detected, hearing mechanisms for complex acoustic scenes, recent anatomical and physiological studies, the potential impacts of noise, and mysticete hearing. We conclude by identifying emerging research topics and areas which require greater focus.
Marine sponges are able to process a variety of carbon (C), nitrogen (N), phosphorous (P), and silicon (Si) dissolved compounds, in addition to the particulate C, N, and P obtained through regular feeding. While Si fluxes through sponges are exclusively related to the elaboration of their skeleton of biogenic silica, C, N, and P fluxes derive from a complex combination of metabolic processes that include feeding, respiration, egestion, excretion, as well as hosting of large microbial populations within the sponge body. Because of the remarkable abundance of sponges in many benthic marine communities, they have the potential to impact the availability of the compounds they take up and release, affecting the benthic-pelagic coupling and cycling rates of chemical elements that are crucial to determine growth of bacterioplankton and primary producers at the ecosystem level. Unfortunately, our knowledge and understanding of the magnitude of the sponge-meditated nutrient fluxes and their ecological implications depends much on the compound type (i.e. C, N, P, or Si). Herein, we review the available knowledge on the subject with emphasis on recent developments.
Gross anatomy of representatives from the three major protobranch superfamilies. (A) Nucula nucleus. superfamily Nuculacea. family Nuculidae (redrawn with permission from Cambridge University Press. after Hirasaka. 1927). (B) Solernya 
Figure h Percent species composition of the major bivalve suhclasscs hy depth zone (redrawn with permission of the Western Society o f Mal;~cologis(.;. after Hickman, 1974). 
The subclass Protobranchia comprises more than 600 species of bivalves that occur throughout the world ocean. Mostly deposit feeders in soft sediments, they are abundant in the deep sea. Apomorphies that unite them as a group include gill structure, hinge conformation, shell microstructure, larval development, foot morphology, respiratory pigments, trophic mode and digestion. They are relatively small and highly conserved in form, originating in the Cambrian era. They may represent an ancestral, derived or paraphylectic group of the Bivalvia. The protobranchs include two orders, the Nuculoida and Solemyoida, which previously were classified separately in the subclasses Paleotaxodonta and Cryptodonta, respectively. They are of ecological interest and have a unique functional morphology. They feed mostly under the surface of the sediment with highly modified labial palps, but the degree to which they are selective in diet remains difficult to determine. They are important bioturbators in many soft-sediment assemblages; their feeding and locomotion affects sediment structure and community development. Solemyoids are unusual in inhabiting reducing environments and hydrocarbon seeps and in deriving their nutrition from endosymbiotic chemosynthetic bacteria. A variety of species of protobranchs are found in oceanic trenches, near hydrothermal vents, and in submarine caves. Protobranchs produce a lecithotrophic larval stage, the pericalymma, making their development unique among bivalves. The pericalymma remains in the plankton for a short time and presumably has low dispersal ability. Recruitment may be intermittent. Growth is rapid in post-larvae but decreases with age, though rates may not necessarily be slow, especially in continental shelf species. Life spans are commonly 1 to 2 decades, but deep-sea representatives may grow more slowly and live longer. Bottom fish, seastars and gastropods are their major predators and a few parasites and commensals have been documented. The predominance of protobranchs in deep-sea sediments may be a result of deep-sea origin or displacement from shallow waters by lamellibranchs. Their ability to deposit-feed, digest food extracellularly, and develop by means of lecithotrophic larvae make them particularly well adapted to cold and oligotrophic habitats.
California responded to concerns about overfishing in the 1990s by implementing a network of marine protected areas (MPAs) through two science-based decision-making processes. The first process focused on the Channel Islands, and the second addressed California's entire coastline, pursuant to the state's Marine Life Protection Act (MLPA). We review the interaction between science and policy in both processes, and lessons learned. For the Channel Islands, scientists controversially recommended setting aside 30-50% of coastline to protect marine ecosystems. For the MLPA, MPAs were intended to be ecologically connected in a network, so design guidelines included minimum size and maximum spacing of MPAs (based roughly on fish movement rates), an approach that also implicitly specified a minimum fraction of the coastline to be protected. As MPA science developed during the California processes, spatial population models were constructed to quantify how MPAs were affected by adult fish movement and larval dispersal, i.e., how population persistence within MPA networks depended on fishing outside the MPAs, and how fishery yields could either increase or decrease with MPA implementation, depending on fishery management. These newer quantitative methods added to, but did not supplant, the initial rule-of-thumb guidelines. In the future, similar spatial population models will allow more comprehensive evaluation of the integrated effects of MPAs and conventional fisheries management. By 2011, California had implemented 132 MPAs covering more than 15% of its coastline, and now stands on the threshold of the most challenging step in this effort: monitoring and adaptive management to ensure ecosystem sustainability.
Order of magnitude of copepod weight-specific outflux rates 
, nitrogen and phosphorus content of fresh copepod faecal pellets. In studies with mixed copepod species, species described are the most dominant 
of the sinking speed of copepod particulate products with those of other zooplankton groups 
We compare the nature of copepod outfluxes of nonliving matter, the factors controlling their rate and their fate, and finally their role, particularly their relative importance in the carbon and nitrogen cycle. Copepods release dissolved matter through excretion and respiration and particulate matter through production of faecal pellets, carcasses, moults, and dead eggs. Excretion liberates several organic C, N, and P compounds and inorganic N and P compounds, with inorganic compounds constituting the larger part. The faecal pellets of copepods are covered by a peritrophic membrane and have a highly variable size and content. There is less information on the nature of other copepod particulate products. The weight-specific rates of posthatch mortality, respiration, excretion, and faecal pellet production have similar C or N levels and are higher than those of moulting and egg mortality. In general, most important factors controlling these rates are temperature, body mass, food concentration, food quality, and faunistic composition. Physical and biological factors govern the vertical fate of copepod products by affecting their sedimentation speed and concentration gradient. The physical factors are sinking speed, advection, stratification, turbulent diffusion, and molecular diffusion. They influence the sedimentation speed and degradation of the copepod products. The biological factors are production, biodegradation (by zooplankton, nekton, and microorganisms) and vertical migration of copepods (diel or seasonal). Physical degradation and biodegradation by zooplankton and nekton are faster than biodegradation by microorganisms.
Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.
The Southern Ocean cephalopod fauna is distinctive, with high levels of endemism in the squid and particularly in the octopodids. Loliginid squid, sepiids and sepiolids are absent from the Southern Ocean, and all the squid are oceanic pelagic species. The octopodids dominate the neritic cephalopod fauna, with high levels of diversity, probably associated with niche separation. In common with temperate cephalopods, Southern Ocean species appear to be semelparous, but growth rates are probably lower and longevity greater than temperate counterparts. Compared with equivalent temperate species, eggs are generally large and fecundity low, with putative long development times. Reproduction may be seasonal in the squid but is extended in the octopodids. Cephalopods play an important role in the ecology of the Southern Ocean, linking the abundant mesopelagic fish and crustaceans with higher predators such as albatross, seals and whales. To date Southern Ocean cephalopods have not been commercially exploited, but there is potential for exploitation of muscular species of the Family Ommastrephidae.
From a fisheries perspective, the declaration of a 640,000km(2) "no-take" Marine Protected Area (MPA) in the Chagos Archipelago in 2010 was preceded by inadequate consideration of the scientific rationale for protection. The entire area was already a highly regulated zone which had been subject to a well-managed fisheries licensing system. The island of Diego Garcia, the only area where there is evidence of overfishing has, because of its military base, been excluded from the MPA. The no-take mandate removes the primary source of sustenance and economic sustainability of any inhabitants, thus effectively preventing the return of the original residents who were removed for political reasons in the 1960s and 1970s. The principles of natural resource conservation and use have been further distorted by forcing offshore fishing effort to other less well-managed areas where it will have a greater negative impact on the well-being of the species that were claimed to be one of the primary beneficiaries of the declaration. A failure to engage stakeholders has resulted in challenges in both the English courts and before an international tribunal.
Top-cited authors
Kathiresan Kandasamy
  • Annamalai University
Brian Lynn Bingham
  • Western Washington University
Simon Jennings
  • Centre for Environment, Fisheries and Aquaculture Science
Michel J Kaiser
  • Heriot-Watt University
Doerthe C. Mueller-Navarra
  • University of Hamburg