Advanced Drug Delivery Reviews

Published by Elsevier
Online ISSN: 0169-409X
Publications
Article
An overview of XMT-1001 is provided in the context of other topoisomerase I inhibitors conjugated to polymers or encapsulated in liposomes. XMT-1001 is a novel polymeric pro-drug derivative of camptothecin (CPT) with a molecular weight of 70 kDa, in which CPT is chemically tethered to a hydrophilic, biodegradable polyacetal polymer, poly(1-hydroxymethylethylene hydroxymethylformal), also called PHF or Fleximer(R). XMT-1001 releases CPT via intermediates camptothecin-20-O-(N-succinimidoglycinate) (CPT-SI), and camptothecin-20-O-(N-succinamidoyl-glycinate) (CPT-SA) over an extended time period. XMT-1001 has an improved therapeutic window compared to CPT and irinotecan in human tumor xenograft models, providing a compelling rationale for clinical development. A unique feature of XMT-1001 is its dual phase release mechanism for CPT which may result in lower levels of CPT in the urine and less bladder toxicity, a serious dose limiting toxicity associated with CPT and CPT conjugated to other polymers. XMT-1001 is being evaluated in patients with advanced cancer in an ongoing Phase 1 trial.
 
Article
Formulation of biopharmaceuticals for pulmonary delivery is faced with the challenge of producing particles with the optimal properties for deep lung deposition without altering the native conformation of these molecules. Traditional techniques such as milling are continuously being improved while newer and more advanced techniques such as spray drying, spray freeze drying and supercritical fluid technology are being developed so as to optimize pulmonary delivery of biopharmaceuticals. While some of these techniques are quite promising, some are harsh and impracticable. Method scale up, cost-effectiveness and safety issues are important factors to be considered in the choice of a technique. This paper reviews the presently developed techniques for particle engineering biopharmaceuticals.
 
Article
IT-101 (Insert Therapeutics-101) is a linear, cyclodextrin-containing polymer conjugate of camptothecin (CPT). When formulated properly, the polymer conjugate self-assembles into nanoparticles of ca. 30 nm diameter and near neutral zeta potential. The nanoparticles show long circulation half-lives in animals and humans and localize in tumors. The nanoparticles enter the tumor cells and slowly release the CPT causing them to disassemble into individual polymer chains that are sufficiently small to be cleared renally. IT-101 is currently being investigated in human clinical trials. Here, the design and development of IT-101 is described with emphasis on features distinguishing it from other polymer-containing therapeutics.
 
Article
Chitosan is being used as a wound-healing accelerator in veterinary medicine. To our knowledge, chitosan enhances the functions of inflammatory cells such as polymorphonuclear leukocytes (PMN) (phagocytosis, production of osteopontin and leukotriene B4), macrophages (phagocytosis, production of interleukin (IL)-1, transforming growth factor beta 1 and platelet derived growth factor), and fibroblasts (production of IL-8). As a result, chitosan promotes granulation and organization, therefore chitosan is beneficial for the large open wounds of animals. However, there are some reported complications of chitosan application. Firstly, chitosan causes lethal pneumonia in dogs which are given a high dose of chitosan. In spite of application of chitosan to various species, this finding is observed only in dogs. Secondly, intratumor injection of chitosan on mice bearing tumor increases the rate of metastasis and tumor growth. Therefore, it is important to consider these effects of chitosan, prior to drug delivery.
 
Article
Advanced drug delivery systems rely on the availability of biocompatible materials. Moreover, biodegradability is highly desirable in the design of those systems. Consequently, aliphatic polyesters appear as a class of promising materials since they combine both properties. Nevertheless, their use in practical biomedical systems relies on clinical approval which not only depends on the material itself but also on its reproducible synthesis with the absence of residual toxics. The first sections of this review aim at reporting on the evolution of the initiators/catalytic systems and of the synthesis conditions (particularly the use of supercritical CO(2) as polymerization medium) in order to produce aliphatic polyesters with controlled macromolecular parameters by still "greener" ways. In addition, the further development of delivery systems also depends on the synthesis of materials exhibiting novel properties, such as amphiphilicity or pH-sensitivity that are emerging from the active research in macromolecular engineering. Functionalizing aliphatic polyesters is quite tedious due to their sensitivity towards hydrolytic degradation. The last section of this review is discussing several strategies to obtain functional (co)polyesters of various architectures providing them with novel properties.
 
Article
The specialised antigen sampling M cells represent an efficient portal for mucosal drug and vaccine delivery. Delivery may be achieved using synthetic particulate delivery vehicles including poly(DL-lactide-co-glycolide) microparticles and liposomes. M cell interaction of these delivery vehicles is highly variable, and is determined by the physical properties of both particles and M cells. Delivery may be enhanced by coating with reagents including appropriate lectins, microbial adhesins and immunoglobulins which selectively bind to M cell surfaces. Live attenuated microorganisms are also suitable as vaccines and mucosal vectors and many, including Salmonella typhimurium, innately target to M cells. After cell surface adhesion, delivery vehicles are rapidly transported across the M cell cytoplasm to underlying lymphoid cells and may subsequently disseminate via the lymphatics. Further definition of M cell development and function should permit exploitation of their high transcytotic capacity for safe and reliable mucosal delivery.
 
Article
Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent's side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from the collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nanocarriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means.
 
Article
The main barrier to the use of RNAi in mammalian systems is the difficulty in delivering siRNA or shRNA to the appropriate tissues. Although progress has been made in this area, many of the technologies developed require specialized expertise and reagents that are beyond the reach of most investigators. In contrast, the hydrodynamic injection technique is simple to perform and enables highly efficient delivery of naked, unmodified siRNA to a number of tissues, especially the liver. This review describes the development of the technique and explores the possible mechanisms that enable uptake of siRNA to biological effect. Examples of the use of hydrodynamic injection in animal models of disease and for the study of gene function are presented and discussed.
 
Article
The mammalian immune system has evolved mechanisms to recognize and respond to 'danger' signals arising from pathogens. Among those danger signals are the unmethylated CpG dinucleotide motifs found in bacteria. At least some of the recognition of these sequences is through cellular components of the innate immune system, such as macrophages. Cytokines released by these cells in response to CpG motifs in turn activate other immune cells, such as NK cells and T cells, and can drive the development of adaptive immune responses. These proinflammatory, Th1 responses can also be generated intentionally with small oligodeoxynucleotides containing stimulatory CpG motifs, and have beneficial properties as vaccine adjuvants and in cancer immunotherapy. These proinflammatory responses have also been seen in gene therapy applications, especially in systemic delivery systems in which plasmid DNA vectors have been introduced with a vehicle such as a cationic lipid. For many gene therapy applications, finding ways to counter the immunostimulatory properties of plasmid DNA vectors is an important approach designed to enhance the vector safety profile, thereby increasing its effective therapeutic index.
 
Article
It has long been shown that therapeutic ultrasound can be used effectively to ablate solid tumors, and a variety of cancers are presently being treated in the clinic using these types of ultrasound exposures. There is, however, an ever-increasing body of preclinical literature that demonstrates how ultrasound energy can also be used non-destructively for increasing the efficacy of drugs and genes for improving cancer treatment. In this review, a summary of the most important ultrasound mechanisms will be given with a detailed description of how each one can be employed for a variety of applications. This includes the manner by which acoustic energy deposition can be used to create changes in tissue permeability for enhancing the delivery of conventional agents, as well as for deploying and activating drugs and genes via specially tailored vehicles and formulations.
 
Article
Nucleic acids have gained a lot of interest for the treatment of ocular diseases. The first to enter in clinic has been Vitravene an antisense oligonucleotide for the treatment of cytomegalovirus (CMV) infection and more recently, research on aptamers have led to the marketing of anti-vascular endothelial growth factor (VEGF) inhibitor (Macugen) for the treatment of age-related macular degeneration (AMD). The siRNAs appear very promising as they are very potent inhibitors of protein expression. Despite their potential, nucleic acids therapeutic targets of nucleic acid-based drugs are mainly located in the posterior segment of the eye requiring invasive administration which can be harmful if repeated. Their intracellular penetration in some cases needs to be enhanced. This is the reason why adequate delivery systems were designed either to insure cellular penetration, protection against degradation or to allow long-term delivery. A combination of both effects was also developed for an implantable system. In conclusion, the intraocular administration of nucleic acids offers interesting perspectives for the treatment of ocular diseases.
 
Article
Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by inflammation of the joints and destruction of cartilage and bone, often compromising both the quality and duration of life. The disease pathology is complex, involving the infiltration and activation of various populations of immune cells along with the release of destructive inflammatory mediators into the synovium of affected joints. Although it is still debatable whether activated macrophages are the primary promoters of RA, emerging data clearly show that the biological activity of this subset of inflammatory cells greatly contributes to both the acute and chronic stages of the disease. The further discovery of folate receptor expression on these activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring RA has opened the possibility of exploiting folic acid to target attached drugs to this population of pathologic cells. Indeed, recent studies have shown that folate-linked imaging and therapeutic agents can be selectively delivered to arthritic joints, allowing both visualization and treatment of RA, with little or no collateral toxicity to normal tissues. This review will first summarize data documenting specific expression of the folate receptor on activated macrophages and then focus on the development of folate-targeted diagnostic and therapeutic agents for guided intervention into rheumatoid arthritis.
 
Article
Noninvasive, transient, and local image-guided blood-brain barrier disruption (BBBD) has been demonstrated with focused ultrasound exposure in animal models. Most studies have combined low pressure amplitude and low time average acoustic power burst sonications with intravascular injection of pre-formed micro-bubbles to produce BBBD without damage to the neurons. The BBB has been shown to be healed within a few hours after the exposure. The combination of focused ultrasound beams with MR image guidance allows precise anatomical targeting as demonstrated by the delivery of several marker molecules in different animal models. This method may in the future have a significant impact on the diagnosis and treatment of central nervous system (CNS) disorders. Most notably, the delivery of the chemotherapy agents (liposomal Doxorubicin and Herceptin) has been shown in a rat model.
 
Article
Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials.
 
Article
Microdialysis is an in vivo technique that permits monitoring of local concentrations of drugs and metabolites at specific sites in the body. Microdialysis has several characteristics, which makes it an attractive tool for pharmacokinetic research. About a decade ago the microdialysis technique entered the field of pharmacokinetic research, in the brain, and later also in peripheral tissues and blood. Within this period much has been learned on the proper use of this technique. Today, it has outgrown its child diseases and its potentials and limitations have become more or less well defined. As microdialysis is a delicate technique for which experimental factors appear to be critical with respect to the validity of the experimental outcomes, several factors should be considered. These include the probe; the perfusion solution; post-surgery interval in relation to surgical trauma, tissue integrity and repeated experiments; the analysis of microdialysate samples; and the quantification of microdialysate data. Provided that experimental conditions are optimized to give valid and quantitative results, microdialysis can provide numerous data points from a relatively small number of individual animals to determine detailed pharmacokinetic information. An example of one of the added values of this technique compared with other in vivo pharmacokinetic techniques, is that microdialysis reflects free concentrations in tissues and plasma. This gives the opportunity to assess information on drug transport equilibration across membranes such as the blood-brain barrier, which already has provided new insights. With the progress of analytical methodology, especially with respect to low volume/low concentration measurements and simultaneous measurement of multiple compounds, the applications and importance of the microdialysis technique in pharmacokinetic research will continue to increase.
 
Article
The human CYP3A subfamily plays a dominant role in the metabolic elimination of more drugs than any other biotransformation enzyme. CYP3A enzyme is localized in the liver and small intestine and thus contributes to first-pass and systemic metabolism. CYP3A expression varies as much as 40-fold in liver and small intestine donor tissues. CYP3A-dependent in vivo drug clearance appears to be unimodally distributed which suggests multi-genic or complex gene-environment causes of variability. Interindividual differences in enzyme expression may be due to several factors including: variable homeostatic control mechanisms, disease states that alter homeostasis, up- or down-regulation by environmental stimuli (such as smoking, drug intake, or diet), and genetic mutations. This review summarizes the current understanding and implications of genetic variation in the CYP3A enzymes. Unlike other human P450s (CYP2D6, CYP2C19) there is no evidence of a 'null' allele for CYP3A4. More than 30 SNPs (single nucleotide polymorphisms) have been identified in the CYP3A4 gene. Generally, variants in the coding regions of CYP3A4 occur at allele frequencies <5% and appear as heterozygous with the wild-type allele. These coding variants may contribute to but are not likely to be the major cause of inter-individual differences in CYP3A-dependent clearance, because of the low allele frequencies and limited alterations in enzyme expression or catalytic function. The most common variant, CYP3A4*1B, is an A-392G transition in the 5'-flanking region with an allele frequency ranging from 0% (Chinese and Japanese) to 45% (African-Americans). Studies have not linked CYP3A4*1B with alterations in CYP3A substrate metabolism. In contrast, there are several reports about its association with various disease states including prostate cancer, secondary leukemias, and early puberty. Linkage disequilibrium between CYP3A4*1B and another CYP3A allele (CYP3A5*1) may be the true cause of the clinical phenotype. CYP3A5 is polymorphically expressed in adults with readily detectable expression in about 10-20% in Caucasians, 33% in Japanese and 55% in African-Americans. The primary causal mutation for its polymorphic expression (CYP3A5*3) confers low CYP3A5 protein expression as a result of improper mRNA splicing and reduced translation of a functional protein. The CYP3A5*3 allele frequency varies from approximately 50% in African-Americans to 90% in Caucasians. Functionally, microsomes from a CYP3A5*3/*3 liver contain very low CYP3A5 protein and display on average reduced catalytic activity towards midazolam. Additional intronic or exonic mutations (CYP3A5*5, *6, and *7) may alter splicing and result in premature stop codons or exon deletion. Several CYP3A5 coding variants have been described, but occur at relatively low allelic frequencies and their functional significance has not been established. As CYP3A5 is the primary extrahepatic CYP3A isoform, its polymorphic expression may be implicated in disease risk and the metabolism of endogenous steroids or xenobiotics in these tissues (e.g., lung, kidney, prostate, breast, leukocytes). CYP3A7 is considered to be the major fetal liver CYP3A enzyme. Although hepatic CYP3A7 expression appears to be significantly down-regulated after birth, protein and mRNA have been detected in adults. Recently, increased CYP3A7 mRNA expression has been associated with the replacement of a 60-bp segment of the CYP3A7 promoter with a homologous segment in the CYP3A4 promoter (CYP3A7*1C allele). This mutational swap confers increased gene transcription due to an enhanced interaction between activated PXR:RXRalpha complex and its cognate response element (ER-6). The genetic basis for polymorphic expression of CYP3A5 and CYP3A7 has now been established. Moreover, the substrate specificity and product regioselectivity of these isoforms can differ from that of CYP3A4, such that the impact of CYP3A5 and CYP3A7 polymorphic expression on drug disposition will be drug dependent. In addition to genetic variation, other factors that may also affect CYher factors that may also affect CYP3A expression include: tissue-specific splicing (as reported for prostate CYP3A5), variable control of gene transcription by endogenous molecules (circulating hormones) and exogenous molecules (diet or environment), and genetic variations in proteins that may regulate constitutive and inducible CYP3A expression (nuclear hormone receptors). Thus, the complex regulatory pathways, environmentally susceptible milieu of the CYP3A enzymes, and as yet undetermined genetic haplotypes, may confound evaluation of the effect of individual CYP3A genetic variations on drug disposition, efficacy and safety.
 
Article
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
 
Article
Preconditioning represents the condition where transient exposure of cells to an initiating event leads to protection against subsequent, potentially lethal stimuli. Recent studies have established that mitochondrial-centered mechanisms are important mediators in promoting development of the preconditioning response. However, many details concerning these mechanisms are unclear. The purpose of this review is to describe the initiating and subsequent intracellular events involving mitochondria which can lead to neuronal preconditioning. These mitochondrial specific targets include: 1) potassium channels located on the inner mitochondrial membrane; 2) respiratory chain enzymes; and 3) oxidative phosphorylation. Following activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and/or increased production of reactive oxygen species (ROS) resulting from the disruption of the respiratory chain or during energy substrate deprivation, morphological changes or signaling events involving protein kinases confer immediate or delayed preconditioning on neurons that will allow them to survive otherwise lethal insults. While the mechanisms involved are not known with certainty, the results of preconditioning are the enhanced neuronal viability, the attenuated influx of intracellular calcium, the reduced availability of ROS, the suppression of apoptosis, and the maintenance of ATP levels during and following stress.
 
Article
Nucleic acids carry the building plans of living systems. As such, they can be exploited to make cells produce a desired protein, or to shut down the expression of endogenous genes or even to repair defective genes. Hence, nucleic acids are unique substances for research and therapy. To exploit their potential, they need to be delivered into cells which can be a challenging task in many respects. During the last decade, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as magnetofection. In this review we summarize the progress and achievements in this field of research. We discuss magnetic formulations of vectors for nucleic acid delivery and their characterization, mechanisms of magnetofection, and the application of magnetofection in viral and nonviral nucleic acid delivery in cell culture and in animal models. We summarize results that have been obtained with using magnetofection in basic research and in preclinical animal models. Finally, we describe some of our recent work and end with some conclusions and perspectives.
 
Article
Enhanced permeability and retention (EPR) effect is the physiology-based principal mechanism of tumor accumulation of large molecules and small particles. This specific issue of Advanced Drug Delivery Reviews is summing up multiple data on the EPR effect-based drug design and clinical outcome. In this commentary, the role of the EPR effect in the intratumoral delivery of protein and peptide drugs, macromolecular drugs and drug-loaded long-circulating pharmaceutical nanocarriers is briefly discussed together with some additional opportunities for drug delivery arising from the initial EPR effect-mediated accumulation of drug-containing macromolecular systems in tumors.
 
Article
The cellular membrane constitutes an effective barrier that offers protection for the complex, yet highly ordered, intracellular environment that defines the cell. Passage of molecules across this barrier is highly regulated and highly restricted, with molecular size being the most significant criteria. Over the last 15 years, a class of small cationic peptides has been discovered that can defy the rules of membrane passage and can gain access to the intracellular environment. Importantly, cellular entrance is also permitted for covalently coupled cargo. The cationic nature of these peptides is crucial for their ability to bind and traverse the anionic cellular membrane. Cell penetrating peptides (CPPs) have been used for the delivery of a wide range of macromolecules including peptides, proteins and antisense oligonucleotides. With the recent advancement and understanding of RNA interference (RNAi), CPPs offer an attractive means for the cellular uptake of double-stranded siRNAs to induce a RNAi response. This review focuses on the potential use of CPPs to deliver siRNA into cells and the implications of this technology for both gene function determination and therapeutic potential.
 
Article
The pathogenesis of cystic fibrosis (CF) lung disease is reviewed, focusing on an overview of the physiologic mechanisms that regulate mucus transport. A major emphasis is placed on the active transport systems that regulate the airway surface liquid (ASL) volume and, particularly, regulate the volume of the periciliary liquid (PCL) layer. A sequence is developed for CF whereby there is a depletion of the PCL that reflects the combined dysfunctions of accelerated Na(+)-dependent volume absorption and failure to secrete Cl(-). Both dysfunctions are a direct consequence of missing cystic fibrosis transmembrane conductance regulator (CFTR) at the apical membrane of airway epithelial cells. PCL depletion leads to failure of mucus transport, which is associated with persistent mucin secretion and formation of adherent mucus plaques and plugs. These plugs become the nidus for persistent bacterial airway infections that ultimately lead to a markedly anaerobic luminal environment.
 
Article
In addition to its typical role as a scaffold, molecular filter, and cell modulator, the pericellular matrix can bind bioactive molecules and serve as a repository, while regulating their activation, synthesis, and degradation. This review focuses on interactions between bioactives, specifically growth factors and cytokines, with various components of the pericellular matrix. For example, biglycan and betaglycan, proteoglycans of the pericellular matrix, and decorin, a proteoglycan of the interstitial extracellular matrix, bind and regulate the activity and availability of transforming growth factor-beta. From evidence presented in this paper, it is obvious that the presence of growth factors in the pericellular matrix is integral to the spatiotemporal coordination of cellular activities to ensure proper tissue/organ formation during wound healing. It is believed by many researchers that the delivery of the right growth factors at the right time is instrumental to the orchestration of tissue regeneration. Thus, the interplay between the pericellular environment and bioactive molecules provides an underutilized knowledge base in the design and creation of tissue engineered constructs.
 
Article
Mitochondrial biogenesis is critical for the normal function of cells. It is well known that mitochondria are produced and eventually after normal functioning they are degraded. Thus, the actual level of mitochondria in cells is dependent both on the synthesis and the degradation. Ever since the proposal of the mitochondrial theory of ageing by Jaime Miquel in the 70's, it was appreciated that mitochondria, which are both a target and a source of radicals in cells, are most important organelles to understand ageing. Thus, a common feature between cell physiology of ageing and exercise is that in both situations mitochondria are critical for normal cell functioning. Mitochondrial synthesis is stimulated by the PGC-1alpha-NRF1-TFAM pathway. PGC-1alpha is the first stimulator of mitochondrial biogenesis. NRF1 is an intermediate transcription factor which stimulates the synthesis of TFAM which is a final effector activating the duplication of mitochondrial DNA molecules. This pathway is impaired in ageing. On the contrary, exercise, particularly aerobic exercise, activates mitochondriogenesis in the young animal but its effects on mitochondrial biogenesis in the old animal are doubtful. In this chapter we consider the interrelationship between mitochondrial biogenesis stimulated by exercise and the possible impairment of this pathway in ageing leading to mitochondrial deficiency and eventually muscle sarcopenia.
 
Article
Lipids, which adopt nonbilayer phases, have fascinated researchers as to the functional roles of these components in biomembranes. In particular, lipids capable of adopting the hexagonal H(II) phase have received considerable attention because of the observation that such lipids can promote membrane fusion. In the rational design of lipid-based delivery systems, H(II) phase lipids have been employed to endow systems with fusogenic, membrane-destabilizing properties. We will outline the molecular basis for the polymorphic phase behavior of lipids and highlight some of the uses of nonbilayer lipids in the preparation of lipid-based delivery systems. In addition, a distinction will be drawn between lipid-based systems which rely on the inclusion of nonbilayer lipids for activity, and systems which contain components which actively promote formation of nonbilayer structure within biological membranes.
 
Article
The multidrug transporter ABCG2 (BCRP/MXR/ABCP) can actively extrude a broad range of endogenous and exogenous substrates across biological membranes. ABCG2 limits oral availability and mediates hepatobiliary and renal excretion of its substrates, and thus influences the pharmacokinetics of many drugs. Recent work, relying mainly on the use of Abcg2(-/-) mice, has revealed important contributions of ABCG2 to the blood-brain, blood-testis and blood-fetal barriers. Together, these functions indicate a primary biological role of ABCG2 in protecting the organism from a range of xenobiotics. In addition, several other physiological functions of ABCG2 have been observed, including extrusion of porphyrins and/or porphyrin conjugates from hematopoietic cells, liver and harderian gland, as well as secretion of vitamin B(2) (riboflavin) and possibly other vitamins (biotin, vitamin K) into breast milk. However, the physiological significance of these processes has been difficult to establish, indicating that there is still a lot to learn about this intriguing protein.
 
Article
Rab GTPases serve as master regulators of vesicular membrane transport on both the exo- and endocytic pathways. In their active forms, rab proteins serve in cargo selection and as scaffolds for the sequential assembly of effectors requisite for vesicle budding, cytoskeletal transport, and target membrane fusion. Rab protein function is in turn tightly regulated at the level of protein expression, localization, membrane association, and activation. Alterations in the rab GTPases and associated regulatory proteins or effectors have increasingly been implicated in causing human disease. Some diseases such as those resulting in bleeding and pigmentation disorders (Griscelli syndrome), mental retardation, neuropathy (Charcot-Marie-Tooth), kidney disease (tuberous sclerosis), and blindness (choroideremia) arise from direct loss of function mutations of rab GTPases or associated regulatory molecules. In contrast, in a number of cancers (prostate, liver, breast) as well as vascular, lung, and thyroid diseases, the overexpression of select rab GTPases have been tightly correlated with disease pathogenesis. Unique therapeutic opportunities lie ahead in developing strategies that target rab proteins and modulate the endocytic pathway.
 
Article
Liposomes have been proposed as carriers for the delivery of therapeutic and diagnostic agents to the lymphatic system. Subcutaneous (s.c.) injection is the route of administration most extensively studied for this purpose. Decisive factors influencing lymphatic absorption and lymph node uptake of s.c. administered liposomes are liposome size and the anatomical site of injection. Generally, other factors such as lipid composition, charge and the presence of a hydrophilic PEG-coating on the liposome surface do not substantially affect lymphatic absorption and lymph node uptake of s.c. administered liposomes. Studies on the intranodal fate of liposomes demonstrate that phagocytosis by macrophages is the most important mechanism for lymph node uptake of liposomes. The observation of relatively high uptake of liposomes in regional lymph nodes after s.c. administration has stimulated research on lymphatic targeting of liposomes for diagnostic and therapeutic applications.
 
Article
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
 
Article
Efficient non-viral gene delivery based on cationic polymers as DNA-condensing agents is dependent on a variety of factors, e.g. complex size, complex stability, toxicity, immunogenicity, protection against DNase degradation, and intracellular trafficking and processing of the DNA. This review examines the advances in the application of chitosan and chitosan derivatives to non-viral gene delivery, and gives an overview of transfection studies which have been performed recently using chitosans as transfection agents.
 
Article
Antibiotic resistance can occur via three general mechanisms: prevention of interaction of the drug with target, efflux of the antibiotic from the cell, and direct destruction or modification of the compound. This review discusses the latter mechanisms focusing on the chemical strategy of antibiotic inactivation; these include hydrolysis, group transfer, and redox mechanisms. While hydrolysis is especially important clinically, particularly as applied to beta-lactam antibiotics, the group transfer approaches are the most diverse and include the modification by acyltransfer, phosphorylation, glycosylation, nucleotidylation, ribosylation, and thiol transfer. A unique feature of enzymes that physically modify antibiotics is that these mechanisms alone actively reduce the concentration of drugs in the local environment; therefore, they present a unique challenge to researchers and clinicians considering new approaches to anti-infective therapy. This review will present the current status of knowledge of these aspects of antibiotic resistance and discuss how a thorough understanding of resistance enzyme molecular mechanism, three-dimensional structure, and evolution can be leveraged in combating resistance.
 
Article
The folate receptor is a highly selective tumor marker overexpressed in greater than 90% of ovarian carcinomas. Two general strategies have been developed for the targeted delivery of drugs to folate receptor-positive tumor cells: by coupling to a monoclonal antibody against the receptor and by coupling to a high affinity ligand, folic acid. First, antibodies against the folate receptor, including their fragments and derivatives, have been evaluated for tumor imaging and immunotherapy clinically and have shown significant targeting efficacy in ovarian cancer patients. Folic acid, a high affinity ligand of the folate receptor, retains its receptor binding properties when derivatized via its gamma-carboxyl. Folate conjugation, therefore, presents an alternative method of targeting the folate receptor. This second strategy has been successfully applied in vitro for the receptor-specific delivery of protein toxins, anti-T-cell receptor antibodies, interleukin-2, chemotherapy agents, gamma-emitting radiopharmaceuticals, magnetic resonance imaging contrast agents, liposomal drug carriers, and gene transfer vectors. Low molecular weight radiopharmaceuticals based on folate conjugates showed much more favorable pharmacokinetic properties than radiolabeled antibodies and greater tumor selectivity in folate receptor-positive animal tumor models. The small size, convenient availability, simple conjugation chemistry, and presumed lack of immunogenicity of folic acid make it an ideal ligand for targeted delivery to tumors.
 
Article
Superparamagnetic iron oxide particles (SPIO and USPIO) have a variety of applications in molecular and cellular imaging. Most of the recent research has concerned cellular imaging with imaging of in vivo macrophage activity. According to the iron oxide nanoparticle composition and size which influence their biodistribution, several clinical applications are possible: detection liver metastases, metastatic lymph nodes, inflammatory and/or degenerative diseases. USPIO are investigated as blood pool agents with T1 weighted sequence for angiography, tumour permeability and tumour blood volume or steady-state cerebral blood volume and vessel size index measurements using T2 weighted sequences. Stem cell migration and immune cell trafficking, as well as targeted iron oxide nanoparticles for molecular imaging studies, are at the stage of proof of concept, mainly in animal models.
 
Article
Monoamine oxidases (MAOs) A and B are mitochondrial bound isoenzymes which catalyze the oxidative deamination of dietary amines and monoamine neurotransmitters, such as serotonin, norepinephrine, dopamine, beta-phenylethylamine and other trace amines. The rapid degradation of these molecules ensures the proper functioning of synaptic neurotransmission and is critically important for the regulation of emotional behaviors and other brain functions. The byproducts of MAO-mediated reactions include several chemical species with neurotoxic potential, such as hydrogen peroxide, ammonia and aldehydes. As a consequence, it is widely speculated that prolonged excessive activity of these enzymes may be conducive to mitochondrial damages and neurodegenerative disturbances. In keeping with these premises, the development of MAO inhibitors has led to important breakthroughs in the therapy of several neuropsychiatric disorders, ranging from mood disorders to Parkinson's disease. Furthermore, the characterization of MAO knockout (KO) mice has revealed that the inactivation of this enzyme produces a number of functional and behavioral alterations, some of which may be harnessed for therapeutic aims. In this article, we discuss the intriguing hypothesis that the attenuation of the oxidative stress induced by the inactivation of either MAO isoform may contribute to both antidepressant and antiparkinsonian actions of MAO inhibitors. This possibility further highlights MAO inactivation as a rich source of novel avenues in the treatment of mental disorders.
 
Article
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in management of cancer and other diseases [M. Triesscheijn, P. Baas, J.H. Schellens, F.A. Stewart, Photodynamic therapy in oncology, Oncologist 11 (2006) 1034-1044]. Most photosensitizers are highly hydrophobic and require delivery systems. Previous classification of delivery systems was based on presence or absence of a targeting molecule on the surface [Y.N. Konan, R. Gurny, E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B 66 (2002) 89-106]. Recent reports have described carrier nanoparticles with additional active complementary and supplementary roles in PDT. We introduce a functional classification for nanoparticles in PDT to divide them into passive carriers and active participants in photosensitizer excitation. Active nanoparticles are distinguished from non-biodegradable carriers with extraneous functions, and sub-classified mechanistically into photosensitizer nanoparticles, [A.C. Samia, X. Chen, C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc. 125 (2003) 15736-15737, R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, Quantum dots as photosensitizers? Nat. Biotechnol. 22 (2004) 1360-1361] self-illuminating nanoparticles [W. Chen, J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment, J. Nanosci. Nanotechnology 6 (2006) 1159-1166] and upconverting nanoparticles [P. Zhang, W. Steelant, M. Kumar, M. Scholfield, Versatile photosensitizers for photodynamic therapy at infrared excitation, J. Am. Chem. Soc. 129 (2007) 4526-4527]. Although several challenges remain before they can be adopted for clinical use, these active or second-generation PDT nanoparticles probably offer the best hope for extending the reach of PDT to regions deep in the body.
 
Article
One way to improve the selectivity of therapeutic molecules in clinical oncology would be to target them on the tumour site, thereby sparing normal tissues. The development of targeted therapeutic methodologies relies in most cases on the availability of binding molecules specific for tumour-associated markers. The display of repertoires of polypeptides on the surface of filamentous phage, together with the efficient selection-amplification of the desired binding specificities using affinity capture, represents an efficient route towards the isolation of specific peptides and proteins that could act as vehicles for tumour targeting applications. Most investigations in this area of research have so far been performed with phage derived recombinant antibodies, which have been shown to selectively target tumour-associated markers both in preclinical animal models and in the clinic. However, future developments with other classes of polypeptides (small constrained peptides, small globular proteins) promise to be important for the selective delivery of therapeutic agents to the tumour site.
 
Article
Block copolymer micelles encapsulate water insoluble drugs by chemical and physical means, and they may target therapeutics to their site of action in a passive or active way. In this review, we focus on micelles self-assembled from poly(ethylene oxide)-block-poly(L-amino acid) (PEO-b-PLAA). A common theme in these studies is the chemical modification of the core-forming PLAA block used to adjust and optimize the properties of PEO-b-PLAA micelles for drug delivery. Micelle-forming block copolymer-drug conjugates, micellar nanocontainers and polyion complex micelles have been obtained that mimic functional aspects of biological carriers, namely, lipoproteins and viruses. PEO-b-PLAA micelles may be advantageous in terms of safety, stability, and scale-up.
 
Article
The choroid plexus (CP), located in the lateral, third and fourth ventricles, is the site of elimination of xenobiotics and endogenous waste from the cerebrospinal fluid (CSF) together with convective flow associated with CSF turnover. Active efflux transport systems, as well as metabolic enzymes in the choroid plexus epithelial cells (CPE), which form a tight monolayer, play a protective role by facilitating the elimination of xenobiotics including drugs and endogenous waste from the CSF to prevent their accumulation in the central nervous system. Except in the case of lipophilic cationic and neutral compounds, uptake and efflux transporters carry out the vectorial transport across the cell monolayer to transfer their common substrates efficiently from the CSF to the blood side. Many published studies have given us some insights into the uptake mechanisms for organic compounds at the brush border side of the CP. Organic anion transporters, such as Oatp3 and Oat3, play a major role in the uptake of amphipathic and hydrophilic organic anions, respectively, at the brush border surface of the CPE, while the organic cation transporters, Oct2 and/or Oct3, have been suggested to be involved in the uptake of hydrophilic organic cations. In contrast, the molecular characteristics of basolateral transporters have not been fully elucidated. Mrp1 is involved in the excretion of etoposide at the basolateral membrane of the CPE, but its contribution to the excretion of organic anions, especially amphipathic conjugated metabolites, remains controversial. The present manuscript summarizes the efflux transport mechanisms at the choroid plexus and focuses on the molecular characteristics of these transporters.
 
Article
The blood-brain barrier is a major impediment to the entry of many therapeutic drugs into the brain. P-Glycoprotein is an ATP-dependent drug transport protein that is predominantly found in the apical membranes of a number of epithelial cell types in the body, including the blood luminal membrane of the brain capillary endothelial cells that make up the blood-brain barrier. Since P-glycoprotein can actively transport a huge variety of hydrophobic amphipathic drugs out of the cell, it was hypothesized that it might be responsible for the very poor penetration of many relatively large (>400 Da) hydrophobic drugs in the brain, by performing active back-transport of these drugs to the blood. Extensive experiments with in vitro models and with knockout mice lacking blood-brain barrier P-glycoprotein or other animal models treated with blockers of P-glycoprotein have fully confirmed this hypothesis. Absence of functional P-glycoprotein in the blood-brain barrier leads to highly increased brain penetration of a number of important drugs. Depending on the pharmacological target of these drugs in the central nervous system (CNS), this can result in dramatically increased neurotoxicity, or fundamentally altered pharmacological effects of the drug. Given the variety of drugs affected by P-glycoprotein transport, it may be of tremendous therapeutic value to apply these insights to the development of drugs that should have either very poor or very good brain penetration, whichever is preferred for pharmacotherapeutic purposes. The clinical application of P-glycoprotein blockers should also be considered in order to improve the blood-brain barrier permeability of certain drugs that currently display insufficient brain penetration for effective therapy.
 
Article
The main objective of this review is to apportion current and new insight into the biodistribution, radiopharmacokinetics, dosimetry and cell targeting of rhenium-188 labeled radiopharmaceuticals used as therapeutic drugs. The emphasis lies on the generator obtained rhenium-188, its physical, therapeutic, dosimetric and coordinated compounds. Its use in radioimmunotherapy for lymphoma and other hematological diseases with monoclonal antibodies is discussed. Radiolabeled peptides to target cell receptors are an important field in nuclear medicine and in some research facilities are already being used, especially, somatostatin, bombesin and other peptides. Small molecules labeled with 188 Re are promising as therapeutic drugs. A review about some of the non-specific targeting molecules with therapeutic or pain palliation effect such as phosphonates, lipiodol, microparticles and other interesting molecules is included. Research on the labeling of biomolecules with the versatile rhenium-188 has contributed to the development of therapeutics with favorable pharmacokinetic and dosimetric properties for cancer treatment.
 
Article
The membrane of the lysosome contains substrate-specific porters for a wide range of metabolites. Their physiological role is in promoting the efflux of the products of intralysosomal catabolism. With few exceptions, the specificity of these porters makes them unlikely candidates for the translocation of xenobiotics across the lysosome membrane. Where efflux from the lysosome is possible, it is likely to be accomplished by passive diffusion. Experimental studies on passive diffusion across the lysosome membrane have shown that its characteristics are similar to those of other biological membranes. Ease of permeation decreases with increasing hydrophilicity. Macromolecules and some highly hydrophilic molecules as small as sucrose are effectively non-permeant. The notional hydrogen-bonding capacity of molecules (an inverse correlate of oil:water partition coefficient) has been found a good predictor of permeance. Predictions of ease of permeation across lysosome membranes is of value when drug delivery strategies are contemplated that involve a drug-conjugate reaching the lysosome compartment and drug release there by the lysosomal enzymes. These strategies will be unsuccessful if the drug is unable to leave the lysosome and reach the cellular sites where its pharmacological action is required.
 
Article
Magnetic resonance (MR) studies of the therapeutic efficacy of fluorinated drugs has recently become possible due to improvements in detection including the application of very strong magnetic fields up to 9.4 Tesla (T). These advances allow tracking, identification, and quantification of (19)F-labeled biopharmaceuticals using (19)F MR imaging ((19)F MRI) and spectroscopy ((19)F MRS). Both techniques are noninvasive, nondestructive, and enable serial measurements. They also allow for controlled and systematic studies of cellular metabolism in cancerous tissue in vivo (small animals and humans) and in vitro (body fluids, cells culture, tissue extracts and isolated tissues). Here we provide an overview of the (19)F MRI and (19)F MRS techniques used for tracking (19)F labeled anticancer chemotherapeutics and antibodies which allow quantification of drug uptake in cancer cells in vitro.
 
Article
Toll-like receptor 9 (TLR9) agonists have demonstrated substantial potential as vaccine adjuvants, and as mono- or combination therapies for the treatment of cancer and infectious and allergic diseases. Commonly referred to as CpG oligodeoxynucleotides (ODN), TLR9 agonists directly induce the activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early clinical data support the use of TLR9 agonists as vaccine adjuvants, where they can enhance both the humoral and cellular responses to diverse antigens. In mouse tumor models TLR9 agonists have shown activity not only as monotherapy, but also in combination with multiple other therapies including vaccines, antibodies, cellular therapies, other immunotherapies, antiangiogenic agents, radiotherapy, cryotherapy, and some chemotherapies. Phase I and II clinical trials have indicated that these agents have antitumor activity as single agents and enhance the development of antitumor T-cell responses when used as therapeutic vaccine adjuvants. CpG ODN have shown benefit in multiple rodent and primate models of asthma and other allergic diseases, with encouraging results in some early human clinical trials. Although their potential clinical contributions are enormous, the safety and efficacy of these TLR9 agonists in humans remain to be determined.
 
Article
Tissue engineering aims to provide structural and biomolecular cues to compromised tissues through scaffolds. An emerging biomolecular cue is that of RNA interference by which the expression of genes can be silenced through a potent endogenous pathway. Recombinant viral-based approaches in RNAi delivery exist; however non-viral strategies offer many opportunities to exploit this mechanism of regulation in a safer way. Current RNAi therapies in clinical trials are without a vector (naked) or have slightly modified structures. Modification of these molecules with efficient backbone moieties for improved stability and potency, protecting and buffering them with delivery vehicles, and using scaffolds as reservoirs of delivery is at the frontier of current research. However, to enable an efficient sustained therapeutic effect scaffolds have a potentially significant role to play. This review presents non-viral delivery of RNAi that have been attempted via tissue engineered scaffolds. For RNAi to have a clinical impact, it is imperative to evaluate optimal delivery systems to ensure that the efficacy of this promising technology can be maximized.
 
Article
The use of 19F-NMR as a noninvasive probe to measure directly the pharmacokinetics of drugs at their target (effector) site(s) is illustrated in this article by human studies with 5-fluorouracil (5-FU). This drug, and several of its metabolites, have been measured in vivo in animals and in patients using standard clinical MRI systems. Using a pharmacokinetic imaging approach the parameter that can be measured most readily is the tumoral t(1/2) of 5-FU. Patients whose tumoral t(1/2) of 5-FU is equal to/greater than 20 min are designated as "trappers", and those whose tumoral t(1/2) of 5-FU is less are nontrappers. Trapping of 5-FU in tumors is a necessary, albeit not a sufficient condition, for response. Problems associated with the technical aspects of these measurements have been discussed, as well as how modulators and other agents will affect the tumoral t(1/2) of 5-FU. The rationale for the biological processes underlying the fate of 5-FU in humans has been illustrated with the use of a 12 compartment model, where several of the steps have been discussed and the consequences of their inhibition/stimulation related to the noninvasive studies that can be performed with modulators of the action of 5-FU. These 19F-NMR studies have now been extended to other fluoropyrimidines, some of which are prodrugs of 5-FU, and others where the fluorine atoms are on the ribose ring. These studies also reveal information that has both scientific and clinical significance. The studies presented here illustrate some of the potential and some of the usefulness of 19F-MRS in patient management and in drug development. It is a technique that has proven itself.
 
Article
Lipid-based drug delivery systems are of increasing interest to the pharmaceutical scientist because of their potential to solubilize drug molecules that may be otherwise difficult to develop. The ability to predict lipid solubility is an important step in being able to identify the right excipients to solubilize and formulate drugs in lipid formulations. However, predicting lipid solubility is complicated by the fact that interfacial effects may play a dominant role in these mixtures and the solubility may be affected by the microstructure (microemulsions, emulsions, oily solutions, etc.), as well as by the physicochemical properties of the oil, surfactant, co-solvent, and the drug. This review illustrates the fundamental factors that govern solubility in lipid mixtures and discusses models built at varying levels of sophistication to estimate the solubility. Examples from the literature are presented that demonstrate the application of these models, how their choice is related to the drug/lipid employed, and the challenges involved in solubility prediction. New data on the role water plays in altering lipid solubility, not only through its interaction with the solute, but also by changing the structure of lipids by promoting lipid organization are highlighted. The available data demonstrate that a rational understanding of solubilization in lipids is a worthwhile pursuit and models to predict at least the relative solubility from chemical structure have potential. Prediction of absolute solubility is more difficult as it requires knowledge of the drug's escaping tendency from the crystalline state. In recent years, it has become amply clear that for polar solutes, specific interactions are a critical factor governing solubility. Methods that can better take into account the specific as well as non-specific interactions between the solute and solvent, and the lipid microstructure, hold considerable promise for the future.
 
Article
Cell-penetrating peptides (CPPs) including TAT peptide (TATp) have been successfully used for intracellular delivery of a broad variety of cargoes including various nanoparticulate pharmaceutical carriers (liposomes, micelles, nanoparticles). Here, we will consider the main results in this area, with a special emphasis on TATp-mediated delivery of liposomes and DNA. We will also address the development of "smart" stimuli-sensitive nanocarriers, where cell-penetrating function can be activated by the decreased pH only inside the biological target minimizing thus the interaction of drug-loaded nanocarriers with non-target cells.
 
Article
Block copolymers composed of a cationic segment and a hydrophilic segment spontaneously associate with polyanionic DNA to form block copolymer micelles. The distinct feature of the associate is that the core of the polyion complex between DNA and the polycation is coated by a layer of the hydrophilic polymer. The characteristic core-shell structure endows the associate with a high colloidal stability and reduced interaction with blood components. These desirable properties are the major advantages of the micellar DNA delivery system for in vivo application. In this article, the synthesis of block copolymers as well as graft copolymers utilized as DNA delivery systems are described. Particular emphasis is devoted to the association behavior and the physicochemical properties of polyion complex micelles entrapping DNA and related substances in relation to the biological aspects of the associates. Biodistribution and the factors that affect the intracellular fate of the micelles is also addressed based on recent studies in this field.
 
Top-cited authors
Franco Lombardo
Christopher Andrew Lipinski
Kazunori Kataoka
  • The University of Tokyo
Patrick Couvreur
  • Université Paris-Sud 11
Vladimir P Torchilin
  • Northeastern University