AAPS PharmSciTech

Published by American Association of Pharmaceutical Scientists
Online ISSN: 1530-9932
Publications
Article
The objective of this study was to investigate the combined effect of pH modifiers and nucleation inhibitors on enhancing and sustaining the dissolution of AMG 009 tablet via supersaturation. Several bases and polymers were added as pH modifiers and nucleation inhibitors, respectively, to evaluate their impact on the dissolution of AMG 009 tablets. The results indicate that sodium carbonate, among the bases investigated, enhanced AMG 009 dissolution the most. HPMC E5 LV, among the nucleation inhibitors tested, was the most effective in sustaining AMG 009 supersaturation. The release of AMG 009 went from 4% for tablets which did not contain both sodium carbonate and HPMC E5 LV to 70% for the ones that did, resulting in a 17.5-fold increase in the extent of dissolution. The effect of compression force and disintegrant on the dissolution of tablets were also evaluated. The results indicate that compression force had no effect on AMG 009 release. The addition of disintegrating agents, on the other hand, decreased the dissolution of AMG 009.
 
Chemical structure of AMG 009 
pH solubility pro fi le of AMG 009 
Dissolution pro fi les of capsules in 900 ml of 0.01 N HCl using USP Apparatus II 
Dissolution pro fi les of capsules in 900 ml of 0.01 N HCl containing 0.033% HPMC E5 using USP Apparatus II 
Dissolution pro fi les of tablets in 900 ml of 0.01 N HCl using USP Apparatus II 
Article
Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation, where poorly soluble acidic AMG 009 molecule was intimately mixed and compressed together with a basic pH modifier (e.g., sodium carbonate) and nucleation inhibitor hydroxypropyl methylcellulose K100 LV (HPMC K100 LV), was demonstrated previously. However, not all acidic or basic drugs are compatible with basic or acidic pH modifiers either chemically or physically. The objective of this study is to investigate whether similar dissolution enhancement of AMG 009 can be achieved from a bilayer dosage form, where AMG 009 and sodium carbonate are placed in a separate layer with or without the addition of HPMC K100 LV in each layer. Study results indicate that HPMC K100 LV-containing bilayer dosage forms gained similar dissolution enhancement as matrix dosage forms did. Bilayer dosage forms without HPMC K100 LV benefitted the least from dissolution enhancement.
 
Release profiles of diltiazem hydrochloride from the granules showing the effect of increasing the drug:Gelucire ratios.  
SEM images of (A) diltiazem hydrochloride, original magnification × 199; (B) melt granules, × 73; (C) fresh sample, × 1120; and (D) aged sample, × 1020.  
HSPM photomicrographs of Gelucire 43/01: (A) untreated samples; (B) freshly prepared placebo granules; and (C) aged placebo granules.  
Release profiles of diltiazem hydrochloride from granules (1:1.5) showing effect of aging.  
Article
The basic objective of this study was to explore the application of Gelucire 43/01 for the design of multi-unit floating systems of a highly water-soluble drug diltiazem HCl. Diltiazem HCl-Gelucire 43/01 granules were prepared by melt granulation technique. The granules were evaluated for in vitro and in vivo floating ability, surface topography, and in vitro drug release. Aging effect on storage was evaluated using scanning electron microscopy, hot stage polarizing microscopy (HSPM), differential scanning calorimetry (DSC), and in vitro drug release. Granules were retained in stomach at least for 6 hours. Approximately 65% to 80% drug was released over 6 hours with initial fast release from the surface. Surface topography, HSPM, DSC study of the aged samples showed phase transformation of Gelucire. The phase transformation also caused significant increase in drug release. In conclusion, hydrophobic lipid, Gelucire 43/01, can be considered as an effective carrier for design of a multi-unit floating drug delivery system of highly water-soluble drugs such as diltiazem HCl.
 
Article
The objective of this study was to prepare and characterize beads of Gelucire 43/01 for floating delivery of metformin hydrochloride (MH). The beads were evaluated for particle size, surface morphology, percent drug entrapment, percent yield, differential scanning calorimetry (DSC), in vitro floating ability, and in vitro drug release. Aging effect on storage was evaluated using hot stage microscopy (HSM), DSC, scanning electron microscopy, and in vitro floating ability. The formed beads were sufficiently hard and spherical in shape. Photomicrographs show that the surface was porous in nature. The average particle diameter of beads was found to be in the size range of 3.85 to 3.95 mm, and percent entrapment was 83.07% to 86.13%. The beads demonstrated favorable in vitro floating ability. The analysis of DSC thermograms revealed no physical interaction between the lipid and the drug in the prepared beads. Prepared formulations showed better controlled release behavior when compared with its conventional dosage form and comparable release profile with marketed sustained release product. HSM photomicrograph showed presence of some unmelted portion even at 43 degrees C and completely melts on 51 degrees C in aged sample. It was found that there was no significant effect on floating ability of aged beads since it remains floats up to 8 h study period. Thus, it is concluded that beads of Gelucire 43/01 could be serve as an effective carrier for highly water-soluble antihyperglycemic drugs like MH for the controlled delivery.
 
Article
The purpose of this research was to develop and optimize a controlled-release multiunit floating system of a highly water soluble drug, ranitidine HCl, using Compritol, Gelucire 50/13, and Gelucire 43/01 as lipid carriers. Ranitidine HCl-lipid granules were prepared by the melt granulation technique and evaluated for in vitro floating and drug release. ethyl cellulose, methylcellulose, and hydroxypropyl methylcellulose were evaluated as release rate modifiers. A 32 full factorial design was used for optimization by taking the amounts of Gelucire 43/01 (X 1) and ethyl cellulose (X 2) as independent variables, and the percentage drug released in 1(Q1), 5(Q5), and 10 (Q10) hours as dependent variables. The results revealed that the moderate amount of Gelucire 43/01 and ethyl cellulose provides desired release of ranitidine hydrochloride from a floating system. Batch F4 was considered optimum since it contained less Gelucire and was more similar to the theoretically predicted dissolution profile (f2=62.43). The temperature sensitivity studies for the prepared formulations at 40°C/75% relative humidity for 3 months showed no significant change in in vitro drug release pattern. These studies indicate that the hydrophobic lipid Gelucire 43/01 can be considered an effective carrier for design of a multiunit floating drug delivery system for highly water soluble drugs such as ranitidine HCl.
 
Article
The objective of this study was to evaluate the long-term stability of the antiretroviral spermicide WHI-07 (5-bromo-6-methoxy-5,6-dihydro-3'-azidothymidine-5'-(p-bromophenyl)-methoxyalaninyl phosphate) in a polymer-based microemulsion. The recovery and stability of WHI-07 in gel-microemulsion was examined by a validated high-performance liquid chromatography (HPLC) method. The stability was examined over a period of 24 weeks at 3 controlled temperatures (4 degrees C, 25 degrees C, and 40 degrees C). The recovery of the prodrug from 0.5% to 2.0% WHI-07-loaded gel-microemulsion was 99.8%. HPLC analysis revealed that a 2% WHI-07-loaded gel-microemulsion stored at room temperature and cold temperatures for 24 weeks retained >90% of the prodrug, whereas those stored at 40 degrees C maintained 90% of initial WHI-07 for at least 10 weeks. The observed stability of WHI-07 in gel-microemulsion is of great importance for its widespread utility in various climatological conditions.
 
The synthetic scheme of 1,2-heptanediol
a Profiles of skin permeation of MTZ: comparison of F1 and F2, n =6. b Profiles of skin permeation of MTZ: comparison of F3 and F4, n =6. c Profiles of skin permeation of MTZ: comparison of F5 and F6, n =6. d Profiles of skin permeation of MTZ: comparison of F7 and F8, n =6. e Profiles of skin permeation of MTZ: comparison of F9 and F10, n =6. f Profiles of skin permeation of MTZ: comparison of F11 and F12, n =6 
a Percentage of epidermal retention of MTZ: comparison of F1 and F2. Mean±SD, n =6. b Percentage of epidermal retention of MTZ: comparison of F3 and F4. Mean±SD, n =6. c Percentage of epidermal retention of MTZ: comparison of F5 and F6. Mean±SD, n =6. d Percentage of epidermal retention of MTZ: comparison of F7 and F8. Mean±SD, n =6. e Percentage of epidermal retention of MTZ: comparison of F9 and F10. Mean±SD, n =6. f Percentage of epidermal retention of MTZ: comparison of F11 and F12. Mean±SD, n =6. SD standard deviation 
a Proposed hydrogen bonds interactions between ceramides and modifier molecules (1,2-hexanediol/1,2-heptanediol and 1,4-cyclohexanediol). - - - H-bonding. b Computer- generated potential interactions of ceramide 6 molecules with penetration retarders 
Schematic representation between ceramides and modifier molecules (1,2-butanediol/1,2-pentanediol) 
Article
The objective of the present study is to investigate the effect of hydrocarbon chain length in 1,2-alkanediols on percutaneous absorption of metronidazole (MTZ). Twelve formulations (1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol in 4% concentration, 1,2-hexanediol, and 1,2-heptanediol in 1% concentration, in the absence and presence of 1,4-cyclohexanediol, respectively) were studied in an in vitro hairless mouse skin model using Franz diffusion cell. Based on the flux values and retardation ratios (RR), a penetration retardation effect on percutaneous absorption of MTZ was observed for the formulations containing 1,2-diols having six- to seven-carbon chain in the presence of 1,4-cyclohexanediol (1,2-hexanediol with chain length of six hydrocarbons, RRs are 0.69 and 0.76 in the concentration of 4% and 1%, respectively; 1,2-heptanediol with chain length of seven hydrocarbons, RR is 0.78 in the concentration of 1%). On the other hand, no retardation effect was observed in formulations containing short alkyl chains (RRs of 1,2-propanediol, 1,2-butanediol, and 1,2-pentanediol are 0.99, 1.61, and 0.96, respectively). Instead, a penetration enhancement effect was observed for 1,2-diols having four and five carbons. In other words, effect of 1,2-alkanediols on percutaneous absorption of MTZ can be systematically modulated by simply varying number of –CH2 groups in the hydrocarbon chain—from being a penetration enhancer to retardant. These observations shed light on mechanism of the penetration enhancement and retardation effect and provide insight into rational design of penetration enhancers and retardants. Furthermore, the combination of 1,2-alkanediols and 1,4-cyclohexanediol could become a general vehicle for controlled release of pharmaceutical and cosmetic active ingredients. Figure ᅟ
 
Article
1,3-dipropyl-8-cyclopentylxanthine (CPX) has been shown to stimulate in vitro CFTR activity in F508 cells. Data from a phase I study demonstrated erratic bioavailability and no measurable clinical response to oral CPX. One cause for its poor bioavailability may have been dissolution rate limited absorption, but there is little published physicochemical data on which to base an analysis. The objective of this study was to determine the solubility and solid-state characteristics of CPX. CPX is a weak acid with pKa of 9.83 and water solubility at pH 7.0 of 15.6 microM. Both laureth-23 and poloxamer 407 increased the apparent water solubility linearly with increasing concentrations. CPX exists in two crystal forms, one of which (form II) has been solved. Form II is a triclinic crystal with space group P1 and calculated density of 1.278 g/cm(3). X-ray powder diffraction and differential scanning calorimetry studies (DSC) indicated that CPX crystals prepared at room temperature were mixtures of forms I and II. DSC results indicated a melting point of approximately 195 degrees C for form I and 198 degrees C for form II. Thermogravimetric analysis indicated no solvent loss upon heating. Dynamic water vapor sorption data indicated no significant water uptake by CPX up to 90% RH. Analysis of the data indicates that CPX may not be amenable to traditional formulation approaches for oral delivery.
 
Article
This study was designed to investigate the physical characteristics and crystalline structure of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine (PNQ), a new active compound against Trypanosoma cruzi, the causative agent of American trypanosomiasis. Methods used included differential scanning calorimetry, thermogravimetry, hot stage microscopy, polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and high-resolution X-ray powder diffraction (HR-XRPD). According to PLM and HR-XRPD data, PNQ crystallized as red oolitic crystals (absolute methanol) or prisms (dimethyl sulfoxide [DMSO]-water) with the same internal structure. The findings obtained with HR-XRPD data (applying molecular location methods) showed a monoclinic unit cell [a = 18.4437(1) A, b = 3.9968(2) A, c = 14.5304(1) A, alpha = 90 degrees , beta = 102.71(6) degrees , gamma = 90 degrees , V = 1044.9(1) A(3), Z = 4, space group P2(1)/c], and a crystal structure (excluding H-positions) described by parallel layers in the direction of the b-axis, with molecules held by homochemical (phenyl-phenyl and pyrazole-pyrazole) van der Waals interactions. In addition, FTIR spectra displayed the NH-pyrazole stretch overlapped with the OH absorption at 3222 cm(-1), typical of -NH and -OH groups associated through H-bondings; and a carbonyl stretching absorption at 1694 cm(-1), indicating a nonextensively H-bonded quinonic C=O, which was in accordance with the solved crystal structure of PNQ. The existence of such cohesive forces shed light on the thermoanalytical data, which revealed that PNQ is a stable solid, unaffected by oxygen that decomposed without melting above 260 degrees C.
 
The model of the vertical Franz diffusion cell 
a Percentage of epidermal retention of MTZ: comparison of F1, F4, and F5. Mean±SD, n =6. b Percentage of amount of MTZ in receptor medium: comparison of F1, F4, and F5. Mean±SD, n =6. c Percentage of epidermal retention of MTZ: comparison of F1, F6, F7, F8, and F9. Mean±SD, n =6. d Percentage of amount of MTZ in receptor medium: comparison of F1, F6, F7, F8, and F9. Mean±SD, n =6. e Percentage of epidermal retention of MTZ: comparison of F1, F10, and F11. Mean±SD, n =6. f Percentage of amount of MTZ in receptor medium: comparison of F1, F10, and F11. Mean±SD, n =6. SD standard deviation 
Proposed hydrogen bonds interactions between ceramides and modifier molecules 1,2-hexanediol and 1,4-cyclohexanedicarboxylic acid. Dashed lines , H-bonding 
Proposed hydrogen bonds interactions between ceramides and modifier molecules 1,2- hexanediol, trans -1,2-cyclohexanediol, and cis -1,2-cyclohexanediol. Dashed lines , H-bonding 
Article
In a previous study, a synergistic retardation effect of 1,4-cyclohexanediol and 1,2-hexanediol on percutaneous absorption and penetration of metronidazole (MTZ) was discovered. A complex formation between 1,4-cyclohexanediol and 1,2-hexanediol was proposed to be responsible for the observed effect. The objective of this study was to investigate the necessity of hydroxyl group and the ring structure in 1,4-cyclohexanediol on percutaneous absorption and penetration of MTZ. Eleven formulations were studied in an in vitro porcine skin model using glass vertical Frans Diffusion Cell. 1,4-Cyclohexanediol was changed into 1,4-cyclohexanedicarboxylic acid, trans (and cis)-1,2-cyclohexanediol and 1,6-hexanediol, respectively, to study if H-bonding or ring structure would influence the retardation effect. MTZ was applied at infinite dose (100 mg), which corresponded to 750 μg of MTZ. Based on modifier ratios (MR) calculated by the flux values, the retardation effect on percutaneous absorption and penetration of MTZ was found in the formulations containing 1,4-cyclohexanedicarboxylic acid or cis-1,2-cyclohexanediol (MR values were 0.47 for which only contains 1,4-cyclohexanedicarboxylic acid, 0.74 for the formulation containing both 1,4-cyclohexanedicarboxylic acid and 1,2-hexanediol, and 0.90 for the formulation containing cis-1,2-cyclohexanediol and 1,2-hexanediol, respectively). The results showed that the hydroxyl group and structure of 1,4-cyclohexanediol played a significant role in retardation effects and provided valuable insight on the mechanisms of retardation effect through structure-activity relationships.
 
Article
The purpose of the research was to study the purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. The enzyme was purified in a 2-step procedure involving ammonium sulfate precipitation and Sephadex G-200 gel permeation chromatography. The enzyme was shown to have a relative low molecular weight of 15 kd by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and was purified 21-fold with a yield of 7.5%. It was most active at 60 degrees C, pH 10, with casein as substrate. It was stable between pH 8 and 10. This enzyme was almost 100% stable at 60 degrees C even after 350 minutes of incubation. It was strongly activated by metal ions such as Ca+2, Mg+2, and Mn+2. Enzyme activity was inhibited strongly by phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP) but was not inhibited by ethylene diamine tetra acetic acid (EDTA), while a slight inhibition was observed with iodoacetate, p-chloromercuric benzoate (pCMB), and beta-mercaptoethanol (beta-ME). The compatibility of the enzyme was studied with commercial and local detergents in the presence of 10mM CaCl2 and 1M glycine. The addition of 10mM CaCl2 and 1M glycine, individually and in combination, was found to be very effective in improving the enzyme stability where it retained 52% activity even after 3 hours. This enzyme improved the cleansing power of various detergents. It removed blood stains completely when used with detergents in the presence of 10mM CaCl2 and 1M glycine.
 
Article
The purpose of this investigation was to study the effect of Bacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric productivity with calcium alginate was 15.11 U/mL/hour, which was 79.03% higher production over the conventional free-cell fermentation. Similarly, the specific volumetric productivity by repeated batch fermentation was 13.68 U/mL/hour with k-Carrageenan, 12.44 U/mL/hour with agar-agar, 11.71 U/mL/hour with polyacrylamide, and 10.32 U/mL/hour with gelatin. In the repeated batch fermentations of the shake flasks, an optimum level of enzyme was maintained for 9 days using calcium alginate immobilized cells. From the results, it is concluded that the immobilized cells of B subtilis PE-11 in calcium alginate are more efficient for the production of alkaline protease with repeated batch fermentation. The alginate immobilized cells of B subtilis PE-11 can be proposed as an effective biocatalyst for repeated usage for maximum production of alkaline protease.
 
Article
NPC 1161C is a novel antimalarial drug of interest because of its superior curative and prophylactic activity, and favorable toxicity profile against in vivo and in vitro models of malaria, pneumocystis carinii pneumonia, and leishmaniasis. The preformulation studies performed included determination of pKas, aqueous and pH solubility, cosolvent solubility, log P, pH stability, thermal analysis, and preliminary hygroscopicity studies. The mean pKa1, pKa2, and pKa3 were determined to be 10.12, 4.07, and 1.88, respectively. The aqueous solubility was found to be 2.4 × 10−4 M having a saturated solution pH of 4.3–5.0 and a low intrinsic solubility of 1.6 × 10−6 M. A mathematical model of the pH-solubility profile was derived from pH 2.2 to 8.0. An exponential decrease in solubility was observed with increasing pH. The excess solid phase in equilibrium with the solution in aqueous buffers was determined to be the free-base form of the drug. A significant increase in solubility was observed with all the cosolvents studied, in both unbuffered and buffered systems. Mean log P of the salt and the free base were estimated to be 2.18 and 3.70, respectively. The compound had poor stability at pH 7.0 at 37°C, with a t 90 of 3.58 days. Thermal analysis of the drug using DSC and TGA revealed that the drug is present as a semi-crystalline powder, which transformed into the amorphous state after melting. The drug was also found to sublime at higher temperatures. Determination of physicochemical properties of NPC 1161C provided useful information for the development of a dosage form and preclinical evaluation.
 
Article
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 μg/mL in PMs to 293.43 μg/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
 
Article
The purpose of this research was to investigate the measurement and in vitro delivery implications of multimodal distributions, occurring near or in the respirable range, emitted from pressurized metered-dose inhalers (pMDIs). Particle size distributions of solution pMDIs containing hydrofluoroalkane-134a (HFA-134a) and ethanol were evaluated using 2 complementary particle-sizing methods: laser diffraction (LD) and cascade impaction (CI). Solution pMDIs were formulated from mixtures of HFA-134a (50%-97.5% wt/wt) and ethanol. A range of propellant concentrations was selected for a range of vapor pressures. The fluorescent probe, Rhodamine B, was included for chemical analysis. The complementary nature of LD and CI allowed identification of 2 dominant particle size modes at 1 and 10 micro m or greater. Increasing propellant concentrations resulted in increases in the proportion of the size distributions at the 1- micro m mode and also reduced the particle size of the larger droplet population. Despite significant spatial differences and time scales of measurement between the particle-sizing techniques, the fine particle fractions obtained from LD and CI were practically identical. This was consistent with LD experiments, which showed that particle sizes did not decrease with increasing measurement distance, and may be explained by the absence of significant evaporation/disintegration of larger droplets. The fine particle fractions (FPFs) emitted from HFA-134a/ethanol solution pMDI can be predicted on the basis of formulation parameters and is independent of measurement technique. These results highlight the importance of presenting particle size distribution data from complementary particle size techniques.
 
Solubility of PG301029 in Aqueous and Organic Media* 
Stability of PG301029 in Gelucire 44/14 and DMA (2:1) at 4ºC, RT, and 45ºC.
Plasma concentration-time profile of PG301029 after oral administration of 1 mg/mL PG301029 in Gelucire 44/14 and DMA (2:1) to female BALB/c mice (5 mg/kg).
Article
To develop an oral formulation for PG301029, a novel potent agent for the treatment of Hepatitis C virus infection, that not only has very low aqueous solubility but also degrades rapidly in water. The solubility of PG301029 was determined in water, various aqueous media, and several neat organic solvents. The stability of PG301029 was monitored at room temperature in buffers for 4 days, and in several neat organic solvents for up to 8 mo. Drug concentrations were measured by high-performance liquid chromatography (HPLC). Based on solubility and stability data, Gelucire 44/14 and DMA (N,N-dimethylacetamide) at a weight ratio of 2 to 1 were chosen as the formulation vehicle. After the vehicle was prepared, it was maintained in liquid form at approximately 40 degrees C until the PG301029 was dissolved. The final formulation product was a semisolid at room temperature. The bioavailability of the formulation was tested on 4 female BALB/c mice. PG301029 is insoluble in all tested aqueous media, while its solubility is promising in DMA. This compound is unstable in aqueous media and some organic solvents; however, it is stable in DMA. This proposed formulation is able to hold up to 10 mg/mL of drug and is stable at 4 degrees C. The shelf life for this formulation stored at 4degreesC is extrapolated to be greater than 4 years. This formulation dramatically increases the bioavailability of PG301029. This nonaqueous formulation solves the stability, solubility, and bioavailability problems for PG301029. This semisolid formulation can easily be incorporated into soft elastic capsules.
 
Effect of GM-144 and individual components of GM-144 on the motility of human sperm in semen. 
Components of GM-144 formulation
Article
In a systematic effort to develop a dual-function intravaginal spermicide as well as a drug delivery vehicle against sexually transmitted pathogens, a submicron particle size (30-80 nm), lipophilic and spermicidal gel-microemulsion (viz GM-144) containing the pharmaceutical excipients propylene glycol, Captex 300, Cremophor EL, Phospholipon 90G, Rhodigel, Pluronic F-68, and sodium benzoate was formulated. GM-144 completely immobilized sperm in human or rabbit semen in less than 30 seconds. Therefore, the in vivo contraceptive potency of intravaginally applied GM-144 was compared in the standard rabbit model to those of the detergent spermicide, nonoxynol-9 (N-9)-containing formulation. Eighty-four ovulated New Zealand White rabbits in subgroups of 28 were artificially inseminated with and without intravaginal administration of GM-144 or 2% N-9 (Gynol II) formulation and allowed to complete term pregnancy. GM-144 showed remarkable contraceptive activity in the rigorous rabbit model. When compared with control, intravaginal administration of GM-144 and Gynol II resulted in 75% and 70.8% inhibition of fertility (P <.0001 versus control, Fisher's exact test), respectively. Thus, GM-144 as a vaginal contraceptive was as effective as the commercially available N-9 gel. In the rabbit vaginal irritation test, none of the 6 rabbits given daily intravaginal application of spermicidal GM-144 for 10 days developed epithelial ulceration, edema, leukocyte influx, or vascular congestion characteristic of inflammation (total score = 5). Therefore, GM-144 has the potential to become a clinically useful safe vaginal contraceptive and a vehicle for formulating lipophilic drugs used in reducing the risk of heterosexual transmission of sexually transmitted diseases.
 
Article
The purpose of this research was to evaluate the variables that are suggested to influence the adsorption of the hydrophilic hyaluronic acid (HA) onto the surface of the hydrophobic betamethasone-17-valerate (BV) particles in order to formulate a nebulizable suspension. The adsorption of HA from aqueous solutions (0.04% to 0.16%, w/v) to a fixed BV concentration (0.04%, w/v) under different experimental conditions, was investigated. The method of preparation of HA-BV suspensions involved suspending BV particles either in the hydrated HA solution (method 1) or in water followed by addition of solid HA (method 2). Other variables like the time required for the adsorption to complete and temperature at which adsorption is carried out were studied. The nebulization of the suspensions was tested via an air jet nebulizer connected to a twin stage impinger. In order to improve the nebulization behavior of the optimized suspension, l-leucine or sodium taurocholate was incorporated in increasing concentrations (0.01–0.04%, w/v). The optimized suspension, having a nebulization efficiency of 33.75%, was achieved following the adsorption of HA (0.1%, w/v) onto BV particles adopting method 2 of preparation and extending for three days at 4 °C. Incorporation of either l-leucine or sodium taurocholate significantly decreased the aggregate size of the optimized suspension and consequently caused significant increases in the nebulization efficiency to reach 46.87% and 56.25%, respectively.
 
Article
The effects of solvent [acetonitrile, methanol, and acetonitrile/water mixture (20:80, v/v)], buffer concentration (phosphate buffer, pH 7.5), ionic strength and commonly employed adjuvants on the photodegradation of betamethasone-17 valerate in cream and gel formulations have been studied on exposure to UV light (300-400 nm). A validated high-performance liquid chromatography method has been used to determine the parent compound and its photodegraded products. The photodegradation data in the studied solvents showed greater decomposition of the drug in solvents with a lower dielectric constant. A comparatively higher rate of photodegradation was observed in the cream formulation compared to that for the gel formulation. The kinetic treatment of the photodegradation data revealed that the degradation of the drug follows first-order kinetics and the apparent first-order rate constants for the photodegradation reactions, in the media studied, range from 1.62 to 11.30 × 10(-3) min(-1). The values of the rate constants decrease with increasing phosphate concentration and ionic strength which could be due to the deactivation of the excited state and radical quenching. The second-order rate constant (k') for the phosphate ion-inhibited reactions at pH 7.5 has been found to be 5.22 × 10(-2) M(-1) s(-1). An effective photostabilization of the drug has been achieved in cream and gel formulations with titanium dioxide (33.5-42.5%), vanillin (21.6-28.7%), and butyl hydroxytoluene (18.2-21.6%).
 
Chemical structure of 17β-estradiol and its ester prodrugs.
-Physicochemical Properties of 17b-Estradiol, Its Prodrugs, and Half-lives for the In Vitro Hydrolysis of Estradiol Ester Prodrugs in 0.05M Phosphate Buffer pH 7.4 (m=0.5 with NaCl), Rat Plasma, Rat Brain Homogenate at 37˚C.
-Cerebrospinal Fluid (CSF) Concentrations and Ratio of Estradiol Following the Intravenous and Nasal Administrations of Estradiol Ester Prodrugs*.
- Plasma estradiol levels following nasal and intravenous administrations of 3-DMABE 2 HCl at 0.1 mg/kg estradiol equivalent dose. 
- Plasma estradiol levels following nasal and intravenous administrations of 17-DMABE 2 HCl at 0.1 mg/kg estradiol equivalent dose. 
Article
The utility of the nasal route for the systemic delivery of 17beta-estradiol was studied using watersoluble prodrugs of 17beta-estradiol. This delivery method was examined to determine if it will result in preferential delivery to the brain. Several alkyl prodrugs of 17beta-estradiol were prepared and their physicochemical properties were determined. In vitro hydrolysis rate constants in buffer, rat plasma, and rat brain homogenate were determined by high-performance liquid chromatography. In vivo nasal experiments were carried out on rats. Levels of 17beta-estradiol in plasma and cerebral spinal fluid (CSF) were determined with radioimunoassay using a gamma counter. The study revealed that the aqueous solubilities of the prodrugs were several orders of magnitude greater than 17beta-estradiol with relatively fast in vitro conversion in rat plasma. Absorption was fast following nasal delivery of the prodrugs with high bioavailability. CSF 17beta-estradiol concentration was higher following nasal delivery of the prodrugs compared to an equivalent intravenous dose. It was determined that water-soluble prodrugs of 17beta-estradiol can be administered nasally. These prodrugs are capable of producing high levels of estradiol in the CSF and as a result may have a significant value in the treatment of Alzheimer's disease.
 
Article
The purpose of this research was to evaluate the variables that are suggested to influence the adsorption of the hydrophilic hyaluronic acid (HA) onto the surface of the hydrophobic betamethasone-17-valerate (BV) particles in order to formulate a nebulizable suspension. The adsorption of HA from aqueous solutions (0.04% to 0.16%, w/v) to a fixed BV concentration (0.04%, w/v) under different experimental conditions, was investigated. The method of preparation of HA-BV suspensions involved suspending BV particles either in the hydrated HA solution (method 1) or in water followed by addition of solid HA (method 2). Other variables like the time required for the adsorption to complete and temperature at which adsorption is carried out were studied. The nebulization of the suspensions was tested via an air jet nebulizer connected to a twin stage impinger. In order to improve the nebulization behavior of the optimized suspension, L-leucine or sodium taurocholate was incorporated in increasing concentrations (0.01-0.04%, w/v). The optimized suspension, having a nebulization efficiency of 33.75%, was achieved following the adsorption of HA (0.1%, w/v) onto BV particles adopting method 2 of preparation and extending for three days at 4 degrees C. Incorporation of either l-leucine or sodium taurocholate significantly decreased the aggregate size of the optimized suspension and consequently caused significant increases in the nebulization efficiency to reach 46.87% and 56.25%, respectively.
 
Article
The purpose of this research was to micronize beclomethasone-17,21-dipropionate (BDP), an anti-inflammatory inhaled corticosteroid commonly used to treat asthma, using the rapid expansion of supercritical solution (RESS) technique. The RESS technique was chosen for its ability to produce both micron particles of high purity for inhalation, and submicron/nano particles as a powder handling aid for use in next generation dry powder inhalers (DPIs). Particle formation experiments were carried out with a capillary RESS system to determine the effect of experimental conditions on the particle size distribution (PSD). The results indicated that the RESS process conditions strongly influenced the particle size and morphology; with the BDP mean particle size decreasing to sub-micron and nanometer dimensions. An increase in the following parameters, i.e. nozzle diameter, BDP mol fraction, system pressure, and system temperature; led to larger particle sizes. Aerodynamic diameters were estimated from the SEM data using three separate relations, which showed that the RESS technique is promising to produce particles suitable for pulmonary delivery.
 
FTIR for SDs and PMs. a Stretching vibration at 3324,94 cm − 1 b bending vibration at 1653,07 cm − 1 
SEM microphotographs. a ABZ 6000× b P 188 400×, c SD3 6000×, d PM3 6000×, e SD4 6000×, f PM4 6000× 
ABZ solubility curve 
Dissolution pro fi les 
Dissolution profiles
Article
Solids dispersions (SDs) have been proposed as an alternative to improve the dissolution rate of low solubility drugs. SDs containing albendazole (ABZ; 5, 10, 25, and 50% w/w) and Pluronic 188 (P 188) as hydrophilic carrier were formulated. The obtained SDs were assessed in comparison to physical mixtures (PMs). Drug-polymer interactions in solid state were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. No chemical interaction was found between ABZ and poloxamer. The dissolution profiles indicated that ABZ incorporated in SDs and PMs was rapidly released, reaching rapidly the steady state. Increased dissolution rates are usually observed at the highest polymer proportions. However, an opposite effect for SDs as well as for PMs was observed in the assays described here. The systems with the lowest P 188 percentages (SD4, SD3; PM4, PM3) tended to be more effective in increasing the ABZ dissolution rate. Such a result can be attributed to the fact that concentrated aqueous solutions of Poloxamer may form thermo-reversible gels. The physical-mechanical properties indicated that SDs possess improved flow and compacting properties compared to PMs. Thus, ABZ SDs would be more convenient for solid dosage form design and manufacture.
 
Article
The aim of the present study was to enhance the dissolution rate of meloxicam (MLX), a practically water-insoluble drug by preparation of solid dispersion using a hydrophilic polymer, poloxamer 188 (PXM). The kneading technique was used to prepare solid dispersions. A 32 full factorial design approach was used for optimization wherein the drug, polymer ratio (X 1), and the kneading time (X 2) were selected as independent variables and the dissolution efficiency at 60 min (%DE60) and yield percent were selected as the dependent variable. Multiple linear regression analysis revealed that for obtaining higher dissolution of MLX from PXM solid dispersions, a high level of X 1 and a high level of X 2 were suitable. The use of a factorial design approach helped in optimization of the preparation and formulation of solid dispersion. The optimized formula was characterized by solubility studies, angle of repose, and contact angle; Fourier transform infrared spectroscopy, differential scanning calorimetry, x-ray diffraction studies, and scanning electron microscopy demonstrated that enhanced dissolution of MLX from solid dispersion might be due to a decrease in the crystallinity of MLX and PXM. Analysis of dissolution data of optimized formula indicated the best fitting with Korsemeyer–Peppas model and the drug release kinetics as Fickian diffusion. In conclusion, dissolution enhancement of MLX was obtained by preparing its solid dispersion with PXM using kneading technique.
 
Article
The aim of this work was to study the effect of the type of substituent of the cellulose ethers and the molecular mass on the state and dynamics of water in the respective hydrogels to specify the quantity of adsorbed water on the polymers or, more explicitly, to calculate the average number of water molecules bound to a polymer repeating unit (PRU).1H NMR relaxation experiments were performed on equilibrated systems of cellulose ether polymers (HEC, HPC, HPMC K4M, and HPMC K100M) with water. In particular, the water proton spinlattice (T 1) and spin-spin (T 2) relaxation times were measured in these systems at room temperature. The observed proton NMRT 1 andT 2 of water in hydrogels at different cellulose ether concentrations at room temperature were shown to decrease with increasing polymer concentration. The relaxation rate 1/T 1 is sensitive to the type of polymer substituent but insensitive to the polymer molecular mass. The rate 1/T 2 appears much less influenced by the polymer substitution. The procedure developed for calculating the amount of water bound per PRU, based on the analysis of theT 1 andT 2 data, shows that this amount is the largest for HPC followed by HEC, HP MC K4M, and HPMC K100M. The results correlate well with the degree of hydrophilic substitution of the polymer chains. This NMR analysis deals with a single molecular layer of adsorbed water for the investigated cellulose ether polymers at all concentrations, while the rest of the water in the hydrogel is bulk-like. Therefore, the mesh size of polymer network in the view of a single molecular layer is not effectively changed.
 
Article
Experimental molar solubility of PGZ-HCl in binary and ternary mixtures of PG; PEGs 200, 400, 600; and water at 298.2 K are reported. The solubility of PGZ-HCl was increased with the addition of PG and PEGs in which the maximum solubility is observed at 0.600+0.200+0.200 mass fractions of the PG+PEG 400+ water ternary mixture. In order to provide a computational method to calculate the solubilities, the Jouyban-Acree model was fitted to the results of these measurements, and solubilities were back-calculated with employing the solubility data in mono-solvents in which the overall mean deviation of the models was 5.0% and 40.6%, respectively, for correlated data of binary and predicted data of ternary solvents. A previously trained version of the model was used to predict the solubility of PGZ-HCl in PEGs+water mixtures employing the experimental solubility data in mono-solvents in which the overall prediction error was 33.1%. In practical applications of the cosolvency models, when the solubilities of a drug in water and PEG are determined by experiment, it is possible to predict the solubility in PEG+water mixtures using Eq. 3. The expected prediction error for this prediction is ~33% as noticed above. If the solubility data in PEG+water binary mixtures were determined by experiments and the desired solubility is not achieved, then it is possible to use the binary data for predicting the solubility in ternary solvent mixtures. The expected prediction error for this prediction is ~41%.
 
Article
The purpose of this research was to prepare poly-(epsilon-caprolactone) (PCL) particles by an emulsion-diffusion-evaporation method using a blend of poly-(vinyl alcohol) and chitosan derivatives as stabilizers. The chitosan derivatives used were chitosan hydrochloride and trimethyl chitosans (TMC) with varying degrees of quaternization. Particle characteristics-size, zeta potential, surface morphology, cytotoxicity, and transfection efficiency-were investigated. The developed method yields PCL nanoparticles in the size range of 250 to 300 nm with a positive surface charge (2.5 to 6.8 mV). The cytotoxicity was found to be moderate and virtually independent of the stabilizers' concentration with the exception of the highly quaternized TMC (degree of substitution 66%) being significantly more toxic. In immobilization experiments with gel electrophoresis, it could be shown that these cationic nanoparticles (NP) form stable complexes with DNA at a NP:DNA ratio of 3:1. These nanoplexes showed a significantly higher transfection efficiency on COS-1 cells than naked DNA.
 
Article
The goal of this research was to assess the feasibility of using lyophilization to stabilize an exploratory compound, CNK-20402, with a minimal amount of impurity (CNK-20193) formation. A mixed-level full factorial experimental design was used to screen excipients of glycine, mannitol, lactose monohydrate, and povidone K-12. Cryostage microscopy, powder x-ray diffraction, Karl Fischer titration, HPLC, and water vapor sorption were used to assess the formulations' physicochemical properties and stability. Initial physical characterization from powder x-ray diffraction revealed that the mannitol- and glycine-containing formulations were crystalline with the patterns of the pure excipient, whereas the remaining formulations were amorphous in structure. Chemically, the formulations stored at 50 degrees C for 1 month had 2.36%, 1.05%, 0.81%, 0.79%, and 0.49% CNK-20193 for glycine, mannitol, drug alone, povidone K-12, and lactose formulations, respectively. The formulations containing drug-mannitol, drug alone, and drug-lactose were selected for accelerated stability study based on statistical analysis. Recovery of CNK-20193 in these formulations was 1.22%, 1.00%, and 0.55%, respectively, when stored at 40 degrees C/75% relative humidity storage conditions for 3 months. Water vapor sorption analysis revealed weight gains of over 7%, 21%, and 24% for the mannitol, lactose, and drug alone formulations, respectively. Testing formulations with different concentrations of lactose by water vapor sorption indicated that CNK-20402 concentrations as low as 10% (wt/wt) could inhibit the recrystallization of lactose. The lactose-containing formulation exhibited the best stability among the formulations tested. The protective mechanism of lactose on the CNK-20402, based on water vapor sorption studies, is believed to be a result of (1) the drug-lactose interaction, and (2) competition between lactose and drug for the residual water in the formulation.
 
Equilibrium Constant of Ciprofloxacin Loading on Indion 234 With Time*
Effect of PEG concentration and treatment time on water absorption time of DRCs.  
SEMs of DRC: (A) untreated DRC, (B) PEG-treated DRC.  
Article
The polyethylene glycol (PEG) treatment of ciprofloxacin-Indion 234 complex was aimed to retard rapid ion exchange drug release at gastric pH. Ciprofloxacin loading on Indion 234 was performed in a batch process, and the amount of K(+) in Indion 234 displaced by drug with time was studied as equilibrium constant K(DM). Drug-resin complex (DRC) was treated with aqueous PEG solution (0.5%-2% wt/vol) of different molecular weights (MWs) for 2 to 30 minutes. The PEG-treated ciprofloxacin-Indion 234 complex was evaluated for particle size, water absorption time, and drug release at gastric pH. During drug loading on Indion 234, the equilibrium constant (K(DM)) increased rapidly up to 20 minutes with efficient drug loading. Increased time of immersion of the drug resinate in PEG solutions significantly retained higher size particles upon dehydration. The larger DRC particles showed longer water absorption times owing to compromised hydrating power. The untreated DRC showed insignificant drug release in deionized water; while at gastric pH, ciprofloxacin release was complete in 90 minutes. A trend of increased residual particle size, proportionate increase in water absorption time, and hence the retardation of release with time of immersion was evident in PEG-treated DRC. The time of immersion of DRC in PEG solution had predominant release retardant effect, while the effect of molecular weight of PEG was insignificant. Thus, PEG treatment of DRC successfully retards ciprofloxacin ion exchange release in acidic pH.
 
Calibration Curve Values for Ciprofloxacin Analysis 
XRPD of physical mixture of ciprofloxacin-Indion 234 (1:1.3) and DRC. 
DSC curves for DRC and ciprofloxacin. 
Effect of electrolytes on ciprofloxacin release from complexes. 
Article
The purpose of this research was to formulate tasteless complexes of ciprofloxacin with Indion 234 and to evaluate molecular properties of drug complexes. The effect of batch and column process, complexation time, temperature, and pH on ciprofloxacin loading on Indion 234 is reported. Drug resin complexes (DRC) were characterized by infrared spectroscopy, thermal analysis, and x-ray diffraction pattern. Ciprofloxacin release from DRC is obtained at salivary and gastric pH and in the presence of electrolytes. The efficient drug loading was evident in batch process using activated Indion 234 with a drug-resin ratio of 1:1.3. Drug complexation enhanced with pH from 1.2 to 6, while temperature did not affect the complexation process. Infrared spectroscopy revealed complexation of -NH (drug) with Indion 234. DRC are amorphous in nature. Drug release from DRC in salivary pH was insufficient to impart bitter taste. Volunteers rated the complex as tasteless and agreeable. Complete drug release was observed at gastric pH in 2 hours. The drug release was accelerated in the presence of electrolytes. Indion 234 is inexpensive, and the simple technique is effective for bitterness masking of ciprofloxacin.
 
Article
Solubility of drugs is a limiting factor to develop liquid drug formulations and also to improve their bioavailability. One of the common methods to increase the aqueous solubility of low soluble drugs is to use the salt forms of drugs. Using hydrochloride form of PGZ, the aqueous solubility is increased from 0.04 (1,3) to 0.7 mM. PGZ-HCl is still a low soluble drug, and additional solubilization method should be employed. In this work, experimental molar solubility and the density of the saturated solutions of PGZ-HCl in aqueous binary mixtures of ethanol, NMP, and propylene glycol at 298.2°K were reported. The solubility of PGZ-HCl was increased with the addition of the cosolvents, and the maximum solubilities are observed at 0.80, 0.90, and 1.00 volume fractions of the cosolvents, respectively. In order to provide a computational method to calculate the solubilities, the Jouyban-Acree model was fitted to the results of these measurements, and solubilities were back-calculated with employing the solubility data in monosolvents in which the overall mean deviation of the models was 11.6%. Two previously trained version of the model were used to predict the solubility of PGZ-HCl in water-cosolvent mixtures employing the experimental solubility data in monosolvents in which the overall prediction error was 57.0%.
 
Article
Summary and Conclusions Sodium phosphate buffer increased the aggregation of rhIFN-α2b in the range of 1.55 to 1.8103 day−1, as determined by SDS/PAGE under reduced and nonreduced conditions. In contrast, sodium citrate buffer decreased the aggregation rate of this cytokine, as compared with those samples in sodium phosphate buffer. Results from sodium citrate-phosphate buffer were very similar to those obtained with sodium citrate solutions. On the other hand, EDTA Na2×2H2O reduced the aggregation rate of rhIFN-α2b, showing an aggregation kinetic constant in the range of 0.52 to 0.75×103 day−1. Polysorbates 20 and 80 were less effective than the chelating agent in preventing this degradation pathway. Additionally, metal ions (Zn2+ and Cu2+) increased the aggregation kinetic constant of rhIFN-α2b, probably through undetermined metal-catalyzing reactions. Taken together, these data can be useful for the development of new formulations containing rhIFN-α2b as an active ingredient.
 
Article
The main objective of this investigation was to study the feasibility of developing a vaginal bioadhesive microbicide using a SRI’s proprietary two-polymer gel platform (SR-2P). Several formulations were prepared with different combinations of temperature-sensitive polymer (Pluronic® F-127) and mucoadhesive polymer (Noveon® AA-1), producing gels of different characteristics. Prototype polymeric gels were evaluated for pH, osmolality, buffering capacity, and viscosity under simulated vaginal semen dilutions, and bioadhesivity using ex vivo mini pig vaginal tissues and texture analyzer. The pH of the polymeric gel formulations ranged from 5.1 to 6.4; the osmolality varied from 13 to 173 mOsm. Absolute viscosity ranged from 513 to 3,780 cPs, and was significantly reduced (1.5- to 3-fold) upon incubation with simulated vaginal and semen fluid mixture. Among the tested gels (indicated in the middle row as a molar ratio of a mixture of Noveon vs. Pluronic), only SR-2P retained gel structure upon dilution with simulated fluids and mild simulated coital stress. The pH of the SR-2P gel was maintained at about 4.6 in simulated vaginal fluid and also showed high peak force of adhesion in mini pig vaginal tissue. Furthermore, SR-2P gel caused no or only minimal irritation in a mouse vaginal irritation model. The results of this preliminary study demonstrated the potential application of SR-2P gel as a vaginal microbicide vehicle for delivery of anti-HIV agents. Figure Two-polymer bioadhesive vaginal placebo gel (SR-2P); and safety profile in mice
 
Article
The purpose of this research was to improve the hygroscopicity and poor flow properties of the crude dry extract of the seeds of Glinus lotoides and improve the disintegration time of the core-tablets for enteric coated formulation thereof. The liquid crude extract of the plant was adsorbed on granulated colloidal silicon dioxide (Aeroperl 300 Pharma) at 30% w/w and the dry extract preparation (DEP) was dry-granulated with roller-compaction using Micro-Pactor. Hygroscopicity, flow property and disintegration time were improved significantly due to the adsorption and granulation processes. Moreover, the DEP does not become mucilaginous even at higher relative humidity levels (above 65%). Oblong tablets (20 x 8.25 mm) containing 947 mg of the granulated DEP (equivalent to the traditional dose), 363 mg of Avicel PH101 and 90 mg of Ac-di-Sol as disintegrant were formulated using an instrumented eccentric tablet machine at 20 kN. The tablets showed a crushing strength of 195 N, a friability of 0.4% and disintegrated within 9 min. The tablets were then enteric coated using polymethacrylate co-polymers (Eudragit L 100-55 and Kollicoat MAE 100P). The coated tablets resisted disintegration or softening in simulated gastric fluid for a minimum of 2 h and disintegrated within 15 min in intestine simulated fluid at pH 6.8. In addition to controlling the release of the active agents, the enteric coating improved the strength and decreased friability of the core-tablets.
 
Solubility profiles for surfactants at pH 2.0 and pH 7.0. 
Solubility profile of PG-300995 with SLS at pH 1.0, 2.0, and 3.0. 
Solubility profile of ionized and un-ionized forms of PG-300995 with SLS at low pH values. 
Article
Conclusion Solubilization of PG-300995 has been achieved using SLS at low pH. However, at a pH where both the solute and surfactant are ionized, desolubilization can occur owing to the formation of an insoluble estolate salt. This salt can be solubilized by higher concentrations of SLS.
 
Article
The aim of this study was to investigate the effect of Eudragit® RS 30D, talc, and verapamil hydrochloride on dissolution and mechanical properties of beads coated with “drug-layered matrices”. This was accomplished with the aid of a three-factor multiple-level factorial design using percent drug release in 1 and 2 h, T 50, tensile strength, brittleness, stiffness and toughness as the responses. Beads were coated in a fluidized-bed coating unit. Surface morphology and mechanical properties were evaluated by surface profilometry and texture analysis, respectively. No cracks, flaws and fissures were observed on the surfaces. The mechanical properties were dependent on the talc/polymer ratio. The release of verapamil from the beads was influenced by matrix components. Increasing the level of both talc and Eudragit decreased the percent drug released from 67% to 4.8% and from 80.7% to 6.7% in 1 and 2 h, respectively, and increased T 50 from 0.8 to 25.7 h. It was concluded that beads could be efficiently coated with “drug-layered matrices”. The release of drug, however, depends on a balance between the levels of drug, talc, and polymer, whereby desired dissolution and mechanical properties could be controlled by the talc/polymer ratio and the level of drug loading.
 
Diagram of the instrument for in vitro evaluation of bioadhesive properties of the films. 
The vapor penetration through the films at 6, 12, 24, and 48 hours. CS indicates chitosan; EU, Eudragit RS 30D. 
The equilibrium water uptake of the films. CS indicates chitosan; EU, Eudragit RS 30D. 
The elongation of the films under the stretch test at force 2N. CS indicates chitosan; EU, Eudragit RS 30D. 
The weight required to detach the attached films from the pig ’ s intestine. CS indicates chitosan; EU, Eudragit RS 30D. 
Article
The purpose of this research was to design and evaluate chitosan-based films intended for wound dressing application. Required properties for successful wound dressing, such as liquid uptake, vapor and oxygen penetration, bioadhesiveness, and film elasticity, were examined. Water uptake and vapor penetration of the films were determined gravimetrically, while oxygen penetration was determined by Winkler's method. The bioadhesive properties were determined with an in-house pulley system instrument using a pig gut model. Film elasticity was determined with a stretch test using an Instron apparatus. The results showed that pure chitosan films exhibited relatively high liquid uptake and the adsorption tended to decrease with the addition of Eudragit RS 30D. Moisture vapor and oxygen were found to be able to penetrate through all film formulations in comparable amounts. The bioadhesiveness test tended to show lower bioadhesive properties with the addition of Eudragit RS 30D. The formulation containing only chitosan exhibited low elongation of the film at 2 N, but the film elasticity increased with the addition of Eudragit RS 30D. In conclusion, the addition of Eudragit RS 30D could improve a film's mechanical properties but lower its bioadhesiveness.
 
Article
A newly available polyvinylacetate aqueous dispersion, Kollicoat SR 30D, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound (diphenhydramine hydrochloride) from nonpareil-based systems. Kollicoat SR 30D premixed with a selected plasticizer (10% wt/wt propylene glycol, 2.5% triethyl citrate, or 2.5% dibutyl sebacate), talc, and red #30 lake dye was coated onto the drug beads in an Aeromatic Strea I fluid-bed drier with a Wurster insert using bottom spray. With propylene glycol as the plasticizer, increases in polymer coating level retarded drug release from beads in a stepwise fashion along with apparent permeability, indicating a consistent release mechanism. Stability studies at 40 degrees C/75% RH revealed gradual decreases in dissolution rate, and additional curing studies further confirmed the dependence of release kinetics on curing condition. Furthermore, the type of plasticizer was found to play a key role. Unplasticized formulations exhibited the fastest dissolution, followed by formulations plasticized with triethyl citrate, propylene glycol, and dibutyl sebacate. All 4 formulations (unplasticized and plasticized), nevertheless, revealed a marked difference between uncured and cured dissolution profiles. Kollicoat SR 30D has, thereby, been demonstrated to effectively retard drug release from nonpareil-based systems. However, selected plasticizer type and subsequent curing condition play important roles in controlling drug release from such a system.
 
Article
The present investigation concerns with the development and optimization of an in situ forming formulation using 3(3) full factorial design experimentation. Metformin, an antidiabetic drug with upper part of gastrointestinal tract as absorption window was used as a model drug. The formulations were designed with an objective to retain in stomach for an extended time period. The effect of three independent factors--concentrations of sodium alginate (X(1)), gellan gum (X(2)), and metformin (X(3)) on in vitro drug release were used to characterize and optimize the formulation. Five dependent variables-release exponent (Y(1)), dissolution efficiency (Y(2)), drug release at 30 min (Y(3)), 210 min (Y(4)), and 480 min (Y(5)) were considered as optimization factors. The data were statistically analyzed using ANOVA, and a p < 0.05 was considered statistically significant. Three dimensional surface response plots were drawn to evaluate the interaction of independent variables on the chosen dependent variables. Of the prepared 27 formulations, the responses exhibited by batch F17 containing medium level sodium alginate (X(1)), low level gellan (X(2)), and medium level metformin (X(3)) were similar to the predicted responses.
 
Article
The purpose of this research was to evaluate a redesigned impactor stage for the TSI Model 3306 Impactor Inlet with nozzles adjusted to obtain a target cut-point of 4.7 μm. It has been determined that the previous cut-point used in the Model 3306 was nominally closer to 4.14 μm, thus potentially impacting the characterization of aerosol mass. The reassessment of the Model 3306 was performed on 4 solution and 2 suspension metered-dose inhaler (MDI) formulations. The redesigned impactor stage resulted in a 5% to 6% increase in aerosol mass when compared with the previous impactor stage for the products Ventolin-HFA, Proventil-HFA, and 2 cyclosporin solution formulations with high ethanol concentrations (15% wt/wt). For the formulations with low ethanol concentrations (3% wt/wt), minimal differences were observed between the 2 cut-points. In addition, this study reevaluated the requirement of a vertical inlet extension length when using the TSI 3306/3321 system with the redesigned cut-point. It was shown that the use of a 20-cm extension provides mass and aerosol size distributions that are comparable to the Andersen 8-stage Cascade Impactor, for both solution and suspension MDIs. This work indicates that the TSI 3306/3321 system is suitable for preformulation studies of both suspension and solution MDI systems.
 
Article
The purpose of this research was to evaluate a redesigned impactor stage for the TSI Model 3306 Impactor Inlet with nozzles adjusted to obtain a target cut-point of 4.7 microm. It has been determined that the previous cut-point used in the Model 3306 was nominally closer to 4.14 microm, thus potentially impacting the characterization of aerosol mass. The reassessment of the Model 3306 was performed on 4 solution and 2 suspension metered-dose inhaler (MDI) formulations. The redesigned impactor stage resulted in a 5% to 6% increase in aerosol mass when compared with the previous impactor stage for the products Ventolin-HFA, Proventil-HFA, and 2 cyclosporin solution formulations with high ethanol concentrations (15% wt/wt). For the formulations with low ethanol concentrations (3% wt/wt), minimal differences were observed between the 2 cut-points. In addition, this study reevaluated the requirement of a vertical inlet extension length when using the TSI 3306/3321 system with the redesigned cut-point. It was shown that the use of a 20-cm extension provides mass and aerosol size distributions that are comparable to the Andersen 8-stage Cascade Impactor, for both solution and suspension MDIs. This work indicates that the TSI 3306/3321 system is suitable for preformulation studies of both suspension and solution MDI systems.
 
Article
The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)--fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)--beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared determining mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction <4.7 microm aerodynamic diameter (FPF(<4.7 microm)). Next Generation Pharmaceutical Impactor (NGI)-size distributions for Flovent comprised finer particles than determined by Andersen 8-stage impactor (ACI) (MMAD = 2.0 +/- 0.05 micro m [NGI]; 2.8 +/- 0.07 microm [ACI]); however, FPF(<4.7 microm) by both impactors was in the narrow range 88% to 93%. Size distribution agreement for Intal was better (MMAD = 4.3 +/- 0.19 microm (NGI), 4.2 +/- 0.13 microm (ACI), with FPF(<4.7 microm) ranging from 52% to 60%. The Aerodynamic Particle Sizer (APS) undersized aerosols produced with either formulation (MMAD = 1.8 +/- 0.07 micro m and 3.2 +/- 0.02 micro m for Flovent and Intal, respectively), but values of FPF(<4.7 microm)from the single-stage impactor (SSI) located at the inlet to the APS (82.9% +/- 2.1% [Flovent], 46.4% +/- 2.4% [Intal]) were fairly close to corresponding data from the multi-stage impactors. APS-measured size distributions for Qvar (MMAD = 1.0 +/- 0.03 micro m; FPF(<4.7 micro m)= 96.4% +/- 2.5%), were in fair agreement with both NGI (MMAD = 0.9 +/- 0.03 micro m; FPF(<4.7 microm)= 96.7% +/- 0.7%), and ACI (MMAD = 1.2 +/- 0.02 microm, FPF(<4.7 microm)= 98% +/- 0.5%), but FPF(<4.7 microm) from the SSI (67.1% +/- 4.1%) was lower than expected, based on equivalent data obtained by the other techniques. Particle bounce, incomplete evaporation of volatile constituents and the presence of surfactant particles are factors that may be responsible for discrepancies between the techniques.
 
Scanning electron micrographs of PTH (1-34) microparticles. a Unprocessed PTH, b spray-dried PTH/trehalose 1:5, c spray-dried neat PTH, d spray-dried PTH/trehalose/Brij 97 (1:5:0.058), e spray-dried neat trehalose and f spray freeze-dried PTH/trehalose (1:5) 
CD spectra (far UV region) of reconstituted PTH microparticles in double-distilled deionized water. From top to bottom : spray-dried PTH/trehalose/Brij 97, spray-dried neat PTH, unprocessed PTH, spray freeze-dried PTH and spray-dried PTH/trehalose 
a Fluorescence spectra comparing the tertiary structures of (from top to bottom) spray-dried PTH/ trehalose, unprocessed PTH and spray-dried neat PTH and spray-dried PTH/trehalose/Brij 97. b Fluorescence spectra comparing the tertiary structures of (from top to bottom ) spray-dried PTH/trehalose, unprocessed PTH and spray freeze-dried PTH/trehalose 
The in vitro stimulation of cAMP synthesis by the different PTH formulations (mean±SD; n =5) 
Article
Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH.
 
Phase solubility diagram of SN-38 in water (pH adjusted to 3 with 0.02 N HCl) at room temperature (mean ± SD, n=3) 
a Result of docking SN-38 (ball and stick; colored by element) into SBEβCD covered by solid surface). The docking revealed three H-bonds, which are illustrated by green dotted lines; b SN-38 (carbons: gray colored, oxygens: red colored, nitrogens: blue colored) enclosed in the SBEβCD cavity formed by cyclic oligoscaccharides. The sulfonic groups of sulfobutyl ether moieties are shown in orange color; c SN-38 sketched as shown in the cavity of SBEβCD (blue lines) 
Effect of hydrophilic polymers on cyclodextrin solubilization of SN-38. The solubilization of SN-38 by SBEβCD in the presence of three different hydrophilic polymers PVP, NaCMC, and HPMC at concentration of 0% (with no polymer), 0.25%, and 0.5% w/v was plotted. **: Increased solubility in comparison to 0% polymer sample (p<0.05); ##: Decreased solubility in comparison to 0% polymer sample (p<0.05)
Article
SN-38, an active metabolite of irinotecan, is up to 1,000-fold more potent than irinotecan. But the clinical use of SN-38 is limited by its extreme hydrophobicity and instability at physiological pH. To enhance solubility and stability, SN-38 was complexed with different cyclodextrins (CDs), namely, sodium sulfobutylether β-cyclodextrin (SBEβCD), hydroxypropyl β-cyclodextrin, randomly methylated β-cyclodextrin, and methyl β-cyclodextrin, and their influence on SN-38 solubility, stability, and in vitro cytotoxicity was studied against ovarian cancer cell lines (A2780 and 2008). Phase solubility studies were conducted to understand the pattern of SN-38 solubilization. SN-38-βCD complexes were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), and Fourier transform infrared (FTIR). Stability of SN-38-SBEβCD complex in pH 7.4 phosphate-buffered saline was evaluated and compared against free SN-38. Phase solubility studies revealed that SN-38 solubility increased linearly as a function of CD concentration and the linearity was characteristic of an AP-type system. Aqueous solubility of SN-38 was enhanced by about 30-1,400 times by CD complexation. DSC, XRPD, and FTIR studies confirmed the formation of inclusion complexes, and stability studies revealed that cyclodextrin complexation significantly increased the hydrolytic stability of SN-38 at physiological pH 7.4. Cytotoxicity of SN-38-SBEβCD complex was significantly higher than SN-38 and irinotecan in both A2780 and 2008 cell lines. Results suggest that SBEβCD encapsulated SN-38 deep into the cavity forming stable inclusion complex and as a result increased the solubility, stability, and cytotoxicity of SN-38. It may be concluded that preparation of inclusion complexes with SBEβCD is a suitable approach to overcome the solubility and stability problems of SN-38 for future clinical applications.
 
Article
This study presents a new approach to model powder compression during tableting. The purpose of this study is to introduce a new discrete element simulation model for particle-particle bond formation during tablet compression. This model served as the basis for calculating tablet strength distribution during a compression cycle. Simulated results were compared with real tablets compressed from microcrystalline cellulose/theophylline pellets with various compression forces. Simulated and experimental compression forces increased similarly. Tablet-breaking forces increased with the calculated strengths obtained from the simulations. The calculated bond strength distribution inside the tablets showed features similar to those of the density and pressure distributions in the literature. However, the bond strength distributions at the center of the tablets varied considerably between individual tablets.
 
Top-cited authors
Roop Krishen Khar
  • B. S. Anangpuria Educational Institutes
Alka Ahuja
  • College of Pharmacy National University of Science and Technology
Sanjula Baboota
  • Jamia Hamdard University
Michael A Repka
  • University of Mississippi
Patrick P Deluca
  • University of Kentucky