Biopreservation and Biobanking

Publisher: Mary Ann Liebert

Current impact factor: 1.34

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.34
2013 Impact Factor 1.578
2012 Impact Factor 1.5
2011 Impact Factor 1.294

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.35
Cited half-life 2.60
Immediacy index 0.42
Eigenfactor 0.00
Article influence 0.23
ISSN 1947-5543
OCLC 313373688
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Mary Ann Liebert

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author's personal website
    • On institutional repository, pre-print server or research network after 12 months embargo
    • Publisher's version/PDF cannot be used
    • Set statement to accompany deposit (see policy)
    • Publisher copyright and source must be acknowledged
    • NIH authors will have their final paper, (post peer review, copy-editing and proof-reading) deposited in PubMed Central on their behalf
    • Must link to publisher version with DOI
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cryopreservation is a recognized method for the maintenance of Leptospira collections. Although cryoprotectants are commonly used in order to prevent or reduce the adverse effects of freezing, there is no consensus regarding the protocols of cryopreservation. This study aimed to compare cryopreservation protocols for Leptospira using different glycerol and dimethyl sulfoxide (DMSO) concentrations. Leptospira interrogans serovar Icterohaemorrhagiae, L. interrogans serovar Bratislava, and L. borgpetersenii serovar Hardjo were used as the experimental strains. For each strain, three protocols were tested using 5% and 10% glycerol and 2.5% DMSO. For each protocol, 12 tubes containing 1.5 mL of serovar were frozen at -70°C on the same day. An aliquot of each serovar/protocol was thawed once a month throughout 1 year. The viability of leptospires was evaluated by the recovery of those at days 7, 14, and 21 after thawing. Although no significant difference was found among the leptospiral recovery rates for the 9 serovar/protocols tested, DMSO (2.5%) was shown to be slightly better than glycerol, and its use should be encouraged as a cryoprotectant for leptospires.
    No preview · Article · Jan 2016 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pre-analytical variations in plasma and serum samples can occur because of variability in whole-blood processing procedures. The aim of this study was to determine the impact of delayed separation of whole blood on the plasma and serum concentrations of cytokines. The concentrations of 16 cytokines were measured in plasma and serum samples when the centrifugation of whole blood at room temperature was delayed for 4, 6, 24, or 48 h, and the values were compared with those observed after separation within 2 h of whole-blood collection. Receiver operating characteristic (ROC) curve analysis was also performed for cytokines to determine whether cytokine levels in plasma and serum samples can be used to assess delayed separation of whole blood. Plasma concentrations of interleukin (IL)-1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), and soluble CD40 ligand (sCD40L) and serum concentrations of IL-1β, IL-6, IL-8, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β increased significantly (>2-fold) when separation was delayed at room temperature for 24 h. The concentrations of 6 of these cytokines (all except serum IL-1β and IL-6) demonstrated high diagnostic performance (area under the ROC curve >0.8) for delayed separation of whole blood. Furthermore, these cytokine concentrations typically exhibited high sensitivity and specificity at each optimal cutoff point. Conversely, IL-17A was stable in both plasma and serum samples, even when whole-blood centrifugation was delayed at room temperature for 48 h. This study shows that certain cytokines (IL-1β, GM-CSF, sCD40L, IL-8, MIP-1α, and MIP-1β) could be used for assessing the quality of plasma or serum samples.
    No preview · Article · Jan 2016 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: RNA analysis of surgical specimens is one of the most useful methods for exploring biomarkers of advanced cancer. The most readily available source for RNA is formalin-fixed, paraffin-embedded (FFPE) specimens, but RNA isolated from FFPE tissue is of limited use. The PAXgene Tissue (PAX) system is a formalin-free system designed to improve the quality of molecular analysis without diminishing the quality of histopathological analysis. In this human colorectal cancer tissue study, we aimed to evaluate whether surgical specimens fixed with PAX can preserve high-quality RNA in comparison with FFPE and fresh-frozen tissue specimens. Methods: Ten consecutive advanced colorectal cancer patients undergoing colectomy were examined. Each specimen was processed in three ways: as frozen tissue, as PAX-fixed tissue, and as formalin-fixed tissue. RNA integrity numbers (RINs) were assessed using an Agilent Bioanalyzer. RNA transcript levels and stability were investigated by quantitative real-time PCR. We also evaluated the immunohistochemical intensity of Ki-67, CEA, and EGFR in the PAX samples. Results: The average RINs of RNA extracted from frozen and PAX samples were significantly higher than those from FFPE samples (p < 0.001). The cycle threshold (Ct) values were similar in PAX and frozen samples, but significantly increased in FFPE samples (p < 0.001). Most of the ΔCt values in the PAX samples did not differ significantly from those in the matched frozen samples. On the other hand, most of the ΔCt values in the FFPE samples differed significantly from those in the matched frozen samples. The immunohistochemical intensity in the PAX samples was well preserved. Conclusions: The quality of RNA extracted from PAX samples may be slightly inferior to that from frozen samples, but is greatly superior to that from FFPE samples.
    No preview · Article · Oct 2015 · Biopreservation and Biobanking

  • No preview · Article · Oct 2015 · Biopreservation and Biobanking

  • No preview · Article · Oct 2015 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: High-quality cancer tissues are essential for future research, especially molecular research. For the sake of better quality of tissues, some storage methods are chosen according to lab conditions. But the impact of different storing conditions on the quality of RNA, DNA (especially the degree of DNA methylation), and protein of tissues that have undergone a thawing process, is not clear. Methods: We analyzed the influence of different storage conditions including in RNALater solution, normal saline, Opti-mum Cutting Temperature compound (OCT), and snap frozen with no protective reagent (as control) in paired tissue samples on the quality of RNA (RNA Integrity Number value and mRNA expression), DNA quality (DNA amplification and DNA methylation degree of gene RASSF1a), and protein quality. Further, we analyzed the RNA quality of tissues that underwent three freeze-thaw cycles. Results: The RNALater-treated group retained good RNA quality as expected on three repeated freeze-thaw cycles (RIN>8), but the snap-frozen tissues showed relatively poor results after one freeze-thaw cycle (RIN<7) and three times repeated freeze-thaw cycles (RIN<6). RNA from saline- and OCT-treated groups also yielded good results when we repeated freezing and thawing one time (RIN>7) and two times (RIN>6). The impact of different storing conditions on DNA amplification is small. However, DNA methylation and protein quality are different with different storing conditions. OCT seems to be more secure and stable compared with other two experimental groups, and show a similar trend with control group. Conclusions: In consideration of budget and efficiency, we suggest OCT as the best storing method that not only preserves RNA quality during the freezing-thawing process well, but also ensures more secure and stable DNA and protein.
    No preview · Article · Oct 2015 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process.
    No preview · Article · Sep 2015 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high survival rate of cryopreserved cells requires optimal cooling and thawing rates in the presence of a cryoprotective agent (CPA) or a combination of CPAs in adequate concentrations. One of the most widely used CPAs, dimethyl sulfoxide (Me2SO), however is toxic at high concentrations and has detrimental effects on cellular functions. Additional processing steps are necessary to remove the CPA after thawing, which make the process expensive and time consuming. Therefore it is of great interest to develop new cryoprotective strategies to replace the currently used CPAs or to reduce their concentration. The aim of this study was to investigate if thermal activation of human pulmonary microvascular endothelial cells (HPMEC ST-1.6R), prior to cryopreservation, could improve their post-thaw viability since the resulting heat shock protein expression acts as an intrinsic cellular protection mechanism. The results of this study suggest that both heat and cold shock pretreatments improve cryopreservation outcome of the HPMEC ST-1.6R cells. By re-cultivating cells after heat shock treatment before cryopreservation, a significant increase in cellular membrane integrity and adherence capacity could be achieved. However a combination of thermal activation and cryopreservation with alternative CPAs such as ectoine and L-proline could not further enhance the cell viability. The results of this study showed that pretreatment of endothelial cells with thermal activation could be used to reduce the Me2SO concentration required in order to preserve cell viability after cryopreservation.
    No preview · Article · Sep 2015 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: The optional RNase digest that is part of many DNA extraction protocols is often omitted, either because RNase is not provided in the kit or because users do not want to risk contaminating their laboratory. Consequently, co-eluting RNA can become a "contaminant" of unknown magnitude in a DNA extraction. We extracted DNA from liver, lung, kidney, and heart tissues and established that 28-52% of the "DNA" as assessed by spectrophotometry is actually RNA (depending on tissue type). Including an RNase digest in the extraction protocol reduced 260:280 purity ratios. Co-eluting RNA drives an overestimation of DNA yield when quantification is carried out using OD 260 nm spectrophotometry, or becomes an unquantified contaminant when spectrofluorometry is used for DNA quantification. This situation is potentially incompatible with the best practice guidelines for biobanks issued by organizations such as the International Society for Biological and Environmental Repositories, which state that biospecimens should be accurately characterized in terms of their identity, purity, concentration, and integrity. Consequently, we conclude that an RNase digest must be included in DNA extractions if pure DNA is required. We also discuss the implications of unquantified RNA contamination in DNA samples in the context of laboratory accreditation schemes.
    No preview · Article · Sep 2015 · Biopreservation and Biobanking
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human biospecimens are used in 40% of cancer research publications. Tumor biobanks are an important source for these biospecimens and support both prospective and retrospective research studies. Supporting retrospective research requires tumor tissue biobanks to accrue an adequate inventory, or stock, of cases comprising tumor biospecimens and associated treatment and outcomes data. We propose a model to establish appropriate targets for stocks of frozen tissue biospecimens in tumor biobanks, sufficient to support cancer research needs. Our model considers national levels of investment in academic cancer research relative to research use of cases described in publication output, and scales this to the local context of the BC Cancer Agency Tumour Tissue Repository (TTR) as an example. Adjustment factors are then applied to correct for the primary intended user base of the biobank, as well as variables intrinsic to all biobanking operations and case collection. On this basis we estimate a current target stock for the TTR of approximately 4500 cases. Local research demand derived from case release data can then be applied to fine-tune accrual targets and refine the biobank's relative portfolio of cases from different tumor sites. We recognize that current targets will need regular remodeling as research demands change over time and that our initial model has some limitations related to the need to extrapolate from available research and biobank utilization data, and does not incorporate biospecimen/case contributions within the context of a network. However, we believe the lack of models to estimate inventory targets for tumor biobanks and to better balance research demand with biospecimen supply, contributes to the hesitation of funders to provide support, and also the problems of sustainability faced by many biobanks. Creating tangible inventory targets will improve biobank efficiency, sustainability, and may also encourage increased and stable funding.
    No preview · Article · Sep 2015 · Biopreservation and Biobanking

  • No preview · Article · Aug 2015 · Biopreservation and Biobanking

  • No preview · Article · Aug 2015 · Biopreservation and Biobanking

  • No preview · Article · Aug 2015 · Biopreservation and Biobanking