Cell adhesion & migration (Cell Adhes Migrat)

Publisher: Taylor & Francis

Journal description

In January of 2007 we plan to launch Cell Adhesion & Migration, the first international peer-reviewed journal to focus exclusively on cell-cell and cell-extracellular matrix interactions and their biological consequence on adhesion and migration. Original papers will cover topics important in the field, including assembly of cell adhesion complexes, biological functions and molecular interactions of ECM molecules, cytoskeleton plasticity and related signalling cascades, cell fusion, immune synapse formation or axon growth and guidance both in physiological condition such as organogenesis and development (special attention will be paid to papers related to stem cells migration or cell intercalation) or pathological conditions such as cancer cell migration or degenerative diseases.

Current impact factor: 4.51

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.505
2013 Impact Factor 3.395
2012 Impact Factor 2.336
2011 Impact Factor 1.816

Impact factor over time

Impact factor

Additional details

5-year impact 3.52
Cited half-life 3.60
Immediacy index 0.58
Eigenfactor 0.01
Article influence 1.21
Website Cell Adhesion & Migration website
Other titles Cell adhesion & migration
ISSN 1933-6926
OCLC 71757501
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: In assisted reproduction, about 30% of embryo implantation failures are related to inadequate endometrial receptivity. To identify molecules involved in endometrial receptivity acquisition, we investigated, using a SELDI-TOF approach, the protein expression profile of early-secretory and mid-secretory endometrium samples. Among the proteins up-regulated in mid-secretory endometrium, we investigated the function of S100A10 in endometrial receptivity and implantation process. S100A10 was expressed in epithelial and stromal cells of the endometrium of fertile patients during the implantation windows. Conversely, it was down-regulated in the mid-secretory endometrium of infertile patients diagnosed as non-receptive. Transcriptome analysis of human endometrial epithelial and stromal cells where S100A10 was silenced by shRNA revealed the deregulation of 37 and 256 genes, respectively, related to components of the extracellular matrix and intercellular connections. Functional annotations of these deregulated genes highlighted alterations of the leukocyte extravasation signalling and angiogenesis pathways that play a crucial role during implantation. S100A10 silencing also affected the migration of primary endometrial epithelial and stromal cells, decidualization and secretory transformation of primary endometrial stromal cells and epithelial cells respectively, and promoted apoptosis in serum-starved endometrial epithelial cells. Our findings identify S100A10 as a player in endometrial receptivity acquisition.
    No preview · Article · Jan 2016 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT.
    No preview · Article · Dec 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare uniaxial traction forces exerted by different cell types using a novel sensor design and to test the dependence of measured forces on cytoskeletal integrity. The sensor design detects forces generated between two contact points by cells spanning a gap. The magnitude of these forces varied according to cell type and were dependent on cytoskeletal integrity. The response time for drug-induced cytoskeletal disruption also varied between cell types: dermal fibroblasts exerted the greatest forces and had the slowest drug response times; EBV-transformed epithelial cells also had slow cytoskeletal depolymerisation times but exerted the lowest forces overall. Conversely, lung epithelial tumour cells exerted low forces but had the fastest depolymerisation drug response. These results provide proof of principle for a new design of force-measurement sensor based on optical interferometry, an approach that can be used to study cytoskeletal dynamics in real time.
    No preview · Article · Dec 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-beta receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in two-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.
    No preview · Article · Dec 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth cone guidance is driven by attractive and repulsive signalling cues. Until recently, repulsive signalling by semaphorins was thought to be mediated through Plexin receptors, whereas Slits-induced repulsion was solely mediated through Robo receptors. In a recent report published in Nature Neuroscience, Celine Delloye-Bourgeois and colleagues (2015) combined phenotypic analyses of transgenic mouse lines and in vitro biochemical experiments to identify PlexinA1 as a novel receptor for Slits. Strikingly, they uncovered for the very first time that the Slit2C-terminal fragment possesses some unique biological activity as binding partner for PlexinA1. Even more excitingly, the signalling cascade triggered by SlitC binding to PlexinA1 mediates growth cone collapse of commissural axons both in vivo and ex vivo and nicely complements Robo-Slit signaling in the developing spinal cord midline to prevent midline recrossing.
    No preview · Article · Dec 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors (HDACIs) have been shown to have antiproliferative activity through cell-cycle arrest, differentiation, and apoptosis in colorectal cancer (CRC) cells. Our present study revealed that one HDAC inhibitor, valproic acid (VPA), can obviously promote in vitro motility of HCT-116 and SW480 cells. VPA treatment significantly down regulates the expression of epithelial markers E-Cadherin (E-Cad) and Zona occludin-1(ZO-1) while up regulates the mesenchymal markers Vimentin (Vim) and N-cadherin (N-Cad), suggesting that VPA can trigger the epithelial-mesenchymal transition (EMT) of CRC cells. VPA treatment significantly increases the expression and nuclear localization of Snail, the key transcription factors of EMT. Snail knockdown by siRNAs obviously reverses VPA induced EMT of HCT-116 and SW480 cells. Further, VPA can decrease the ubiquitination, increase the acetylation, and then elevate the stabilization of Snail. VPA also increases the phosphorylation of Akt/GSK-3β. The inhibitor of PI3K/Akt, LY2994002, significantly attenuates VPA induced phosphorylation of Akt and GSK-3β and up regulation of Snail and Vim. Collectively, our data reveal that VPA can trigger the EMT of CRC cells via up regulation of Snail through AKT/GSK-3β signals and post-transcriptional modification. It suggestes that more attention should be paid when VPA used as new anticancer drugs for CRC patients.
    No preview · Article · Dec 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a three-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behaviour was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed two different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.
    No preview · Article · Oct 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hydatidiform mole (HM) is a placental pathology of androgenetic origin. Placental villi have an abnormal hyperproliferation event and hydropic degeneration. Three situations can be envisaged at its origin: 1. The destruction/expulsion of the female pronucleus at the time of fertilization by one or two spermatozoa with the former being followed by an endoreplication of the male pronucleus leading to a complete hydatidiform mole (CHM) 2. A triploid zygote (fertilization by two spermatozoa) leading to a partial hydatidiform mole (PHM) but can also lead to haploid and diploid clones. The diploid clone may produce a normal fetus while the haploid clone after endoreplication generates a CHM 3. A nutritional defect during the differentiation of the oocytes or the deterioration of the limited oxygen pressure during the first trimester of gestation may lead to the formation of a HM. In countries with poor medical health care system, moles (mainly the CHM) can become invasive or, in rare cases, lead to gestational choriocarcinomas.
    No preview · Article · Sep 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm(2) for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.
    No preview · Article · Sep 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the course of embryo implantation extensive interaction of the trophoblast with uterine tissue is crucial for adequate trophoblast invasion. This interaction is highly controlled, and it has been pointed out that a specific glycocode and changes in glycosylation may be important for successful implantation and maintenance of pregnancy. Both uterine and trophoblast cells have been shown to express cell surface glycoconjugates and sugar binding proteins, such as mucins (MUC) and galectins (gals). An increasing number of studies have investigated potential candidates interacting in this process. However, knowledge about the biochemical nature of the interactions and their importance for trophoblast cell function, and, consequently, for pregnancy outcome are still lacking. This review is aimed at deliberating the possibility that mucins, as heavily glycosylated proteins, might be among the functionally relevant galectin ligands in human trophoblast, based on both published data and our original research.
    No preview · Article · Sep 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.
    No preview · Article · Sep 2015 · Cell adhesion & migration

  • No preview · Article · Aug 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the end product of a multistep process where cancer cells disseminate and home themselves in distant organs. Tumor cell extravasation is a rare, inefficient and transient event in nature and makes its studies very difficult. Noteworthy, little is known about how cancer cells arrest, adhere and pass through the endothelium of capillaries. Moreover, the key events driving metastatic growth in specific organs are not well understood. Thus, although metastasis is the leading cause of cancer-related death, how cancer cells acquire their abilities to colonize distant organs and why they do so in specific locations remain central questions in the understanding of this deadly disease. In this review, we would like to confront two concepts explaining the efficiency and location of metastatic secondary tumors. While the "seed and soil" hypothesis states that metastasis occurs at sites where the local microenvironment is favorable, the "mechanical" concept argues that metastatic seeding occurs at sites of optimal flow patterns. In addition, recent evidence suggests that the primary event driving tumor cell arrest before extravasation is mostly controlled by blood circulation patterns as well as mechanical cues during the process of extravasation. In conclusion, the organ tropism displayed by cancer cells during metastatic colonization is a multi-step process, which is regulated by the delivery and survival of circulating tumor cells (CTCs) through blood circulation, the ability of these CTCs to adhere and cross the physical barrier imposed by the endothelium and finally by the suitability of the soil to favor growth of secondary tumors.
    No preview · Article · Aug 2015 · Cell adhesion & migration
  • [Show abstract] [Hide abstract]
    ABSTRACT: Directional collective cell migration plays an important role in development, physiology, and disease. An increasing number of studies revealed key aspects of how cells coordinate their movement through distances surpassing several cell diameters. While physical modeling and measurements of forces during collective cell movements helped to reveal key mechanisms, most of these studies focus on tightly connected epithelial cultures. Less is known about collective migration of mesenchymal cells. A typical example of such behavior is the migration of the neural crest cells, which migrate large distances as a group. A recent study revealed that this persistent migration is aided by the interaction between the neural crest and the neighboring placode cells, whereby neural crest chase the placodes via chemotaxis, but upon contact both populations undergo contact inhibition of locomotion and a rapid reorganization of cellular traction. The resulting asymmetric traction field of the placodes forces them to run away from the chasers. We argue that this chase and run interaction may not be specific only to the neural crest system, but could serve as the underlying mechanism for several morphogenetic processes involving collective cell migration.
    No preview · Article · Aug 2015 · Cell adhesion & migration