Journal of insect physiology

Publisher: Elsevier

Current impact factor: 2.47

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.47
2013 Impact Factor 2.5
2012 Impact Factor 2.379
2011 Impact Factor 2.236
2010 Impact Factor 2.31
2009 Impact Factor 2.235
2008 Impact Factor 2.155
2007 Impact Factor 2.294
2006 Impact Factor 2.019
2005 Impact Factor 2.04
2004 Impact Factor 1.547
2003 Impact Factor 1.933
2002 Impact Factor 1.789
2001 Impact Factor 1.493
2000 Impact Factor 1.468
1999 Impact Factor 1.251
1998 Impact Factor 1.315
1997 Impact Factor 1.662
1996 Impact Factor 1.749
1995 Impact Factor 1.638
1994 Impact Factor 1.461
1993 Impact Factor 1.329
1992 Impact Factor 1.643

Impact factor over time

Impact factor

Additional details

5-year impact 2.58
Cited half-life >10.0
Immediacy index 0.28
Eigenfactor 0.01
Article influence 0.72
ISSN 1879-1611

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract] ABSTRACT: Rhodnius prolixus (Hemiptera: Reduviidae) is a hematophagous insect native from South America. By the end of the 20th century, it was one of the main vectors of Chagas disease in Venezuela, Colombia several Central American countries and southern Mexico. The aim of the present article is to review the literature regarding R. prolixus toxicology. British entomologist Vincent B. Wigglesworth carried out the first studies on this subject over seventy years ago. A wide bibliographical search allowed to locate one hundred and thirty scientific articles describing the effects of different insecticides on R. prolixus. About one-third of these articles report the acute toxicity and/or sublethal effects produced by the main synthetic neurotoxic families of insecticides (organochlorines, organophosphates, carbamates and pyrethroids). Only a couple of these studies have regarded the toxicokinetics or toxicodynamics of these insecticides. Insect growth or development disruptors, such as juvenoids, chitin synthesis inhibitors, precocenes, azadirachtin and lignoids, have been thoroughly studied in R. prolixus. Important aspects on the mode of action of ureases were also described in this species. By the end of the 1960's, resistance to insecticides was detected in R. prolixus from Venezuela. Some years later, the existence of pyrethroid-resistant individuals was also reported. Control programmes for R. prolixus in countries where Chagas is endemic have only used synthetic neurotoxic insecticides. In 2011, Central America and southern Mexico were declared free of this insect. The recent sequencing of the R. prolixus genome will provide valuable information to understand the molecular basis of insecticide resistance in this species.
    No preview · Article · Apr 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: In insects that lay eggs in large clutches, yolk accumulation in each of the many ovarioles is restricted to the basal (terminal) oocyte, the one closest to the lateral oviduct. All succeeding (subterminal) oocytes remain small until the terminal oocytes finished their development and were ovulated into the oviduct. The major step regulating yolk uptake by terminal oocytes is the formation of gaps between cells of the follicle layer, a process termed patency. In the migratory as well as in the desert locust, patency is induced by a Patency Inducing Factor (PIF) produced by the lateral oviducts. PIF is secreted in all regions of the lateral oviducts and interacts with the basal follicle cells via the pedicel, a fine duct that connects an ovariole with the oviduct. By this mechanism, patency is triggered in the follicle cells of the terminal oocyte only, restricting yolk accumulation to the oocytes next to ovulation. In contrast to the previous hypothesis, juvenile hormone (JH) is not necessary to induce patency, rather JH amplifies the effect of PIF.
    No preview · Article · Apr 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: The rice brown planthopper, Nilaparvata lugens (Stål), a major rice insect pest in Asia, is a vascular bundle-feeder that ejects gelling and watery saliva during the feeding process. Although major proteins in the salivary glands of N. lugens have been identified using 2D PAGE, very little is known about the secreted saliva of this insect. In this study, we identified the major proteins in the secreted watery saliva of N. lugens, via collecting from a sucrose diet that adult planthoppers had fed upon through a membrane of stretched parafilm, and using shotgun LC-MS/MS analysis with reference to transcriptome database of salivary glands of N. lugens. A total of 107 proteins were identified in the watery saliva of N. lugens, over 80% of which showed significant similarity to known proteins. When annotated by the Blast2GO suite, 29 proteins had catalytic activity and 24 proteins were binding proteins. The saliva enzymes included oxidoreductases, hydrolases, phosphatases, peptidases (proteases), kinases, transferases, and lyases. Binding proteins in N. lugens watery saliva included ATP-binding, lipophorin, calcium-binding, actin-binding and DNA-, RNA-, and chromatin-binding proteins. Other non-enzymatic proteins, such as ubiquitins, heat shock proteins, ribosomal proteins, and immunoglobulin proteins were also found in N. lugens watery saliva. This is the first study to identify, characterize and list the proteins in watery saliva of N. lugens, which might be involved in planthopper-rice interactions.
    No preview · Article · Apr 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross-talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.
    No preview · Article · Apr 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species.
    No preview · Article · Apr 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens' spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02 ppm) decreased sperm viability by 50%, 7 days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100 ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1 day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5 ppm) and imidacloprid (0.02 ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.
    No preview · Article · Mar 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Induction of cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) activity was measured in guts of the scarab Popillia japonica Newman, after consumption of single or mixed plant diets of previously ranked preferred (rose, Virginia creeper, crape myrtle and sassafras) or non-preferred hosts (boxelder, riverbirch and red oak). The goal of this study was to quantify activities of P450, GST and CoE enzymes in the midgut of adult P. japonica using multiple substrates in response to host plant suitability (preferred host vs non-preferred hosts), and single and mixed diets. Non-preferred hosts were only sparingly fed upon, and as a group induced higher activities of P450, GST and CoE than did preferred hosts. However, enzyme activities for some individual plant species were similar across categories of host suitability. Similarly, beetles tended to have greater enzyme activities after feeding on a mixture of plants compared to a single plant type, but mixing per se does not seem as important as the species represented in the mix. Induction of detoxification enzymes on non-preferred hosts, or when switching between hosts, may explain, in part, the perceived feeding preferences of this polyphagous insect. The potential consequences of induced enzyme activities on the ecology of adult Japanese beetles are discussed.
    No preview · Article · Mar 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein–carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually.
    No preview · Article · Feb 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Life history traits of herbivores are highly influenced by the quality of their hosts, i.e., the composition of primary and secondary plant metabolites. In holometabolous insects, larvae and adults may face different host plants, which differ in quality. It has been hypothesised that adult fitness is either highest when larval and adult environmental conditions match (environmental matching) or it may be mainly determined by optimal larval conditions (silver spoon effect). Alternatively, the adult stage may be most decisive for the actual fitness, independent of larval food exposure, due to adult compensation ability. To determine the influence of constant versus changing larval and adult host plant experiences on growth performance, fitness and feeding preferences, we carried out a match-mismatch experiment using the mustard leaf beetle, Phaedon cochleariae. Larvae and adults were either constantly reared on watercress (natural host) or cabbage (crop plant) or were switched after metamorphosis to the other host. Growth, reproductive traits and feeding preferences were determined repeatedly over lifetime and host plant quality traits analysed. Differences in the host quality led to differences in the development time and female reproduction. Egg numbers were significantly influenced by the host plant species experienced by the adults. Thus, adults were able to compensate for poor larval conditions. Likewise, the current host experience was most decisive for feeding preferences; in adult beetles a feeding preference was shaped regardless of the larval host plant. Larvae or adults reared on the more nutritious host, cabbage, showed a higher preference for this host. Hence, beetles most likely develop a preference when gaining a direct positive feedback in terms of an improved performance, whereby the current experience matters the most. Highly nutritious crop plants may be, in consequence, all the more exploited by potential pests that may show a high plasticity in reproduction and feeding preferences.
    No preview · Article · Feb 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: Female Amblyomma hebraeum ticks (Acari: Ixodidae) increase their weight ∼10-fold during a 'slow phase of engorgement' (7-9 days), and a further 10-fold during the 'rapid phase' (12-24 hours). During the rapid phase, the cuticle thins by half, with a plastic (permanent) deformation of greater than 40% in two orthogonal directions. A stress of 2.5 MPa or higher is required to achieve this degree of deformation (Flynn and Kaufman, 2015). Using a dimensional analysis of the tick body and applying the Laplace equation, we calculated that the tick must achieve high internal hydrostatic pressures in order to engorge fully: greater than 55 kPa at a fed:unfed mass ratio of ∼20:1, when cuticle thinning commences (Flynn and Kaufman, 2011). In this study we used a telemetric pressure transducer system to measure the internal hydrostatic pressure of ticks during feeding. Sustained periods of irregular high frequency (>20 Hz) pulsatile bursts of high pressure (>55 kPa) were observed in two ticks: they had been cannulated just prior to the rapid phase of engorgement, and given access to a host rabbit for completion of the feeding cycle. The pattern of periods of high pressure generation varied over the feeding cycle and between the two specimens. We believe that these pressures exceed those reported so far for any other animal.
    No preview · Article · Feb 2016 · Journal of insect physiology
  • [Show abstract] [Hide abstract] ABSTRACT: In termites, the soldier caste, with its specialized defensive morphology, is one of the most important characteristics for sociality. Most of the basal termite species have both male and female soldiers, and the soldier sex ratio is almost equal or only slightly biased. However, in the apical lineages (especially family Termitidae), there are many species that have soldiers with strongly biased sex ratio. Generally in termites, since high juvenile hormone (JH) titer is required for soldier differentiation from a worker via a presoldier stage, it was hypothesized that the biased soldier-sex ratio was caused by differences in JH sensitivity and/or JH titer between male and female workers. Therefore, we focused on the presoldier differentiation and the worker JH titer in species with only male soldiers (Nasutitermes takasagoensis) and with both male and female soldiers (Reticulitermes speratus) in natural conditions. In the former species, there are four types of workers; male minor, male medium, female medium and female major workers, and presoldiers differentiate from male minor workers. First, we tried to artificially induce presoldiers from male and female workers. In N. takasagoensis, the presoldier differentiation rate and mortality was significantly higher in male minor workers. Morphological analyses showed that both male and female induced presoldiers possessed normal soldier-specific morphologies. It was suggested that female workers, from which soldiers do not differentiate under natural conditions, also maintained the physiological and developmental potential for soldier differentiation. In R. speratus, however, no differences were observed in solder differentiation rate and mortality between male and female workers. Second, the JH titers of each sex/type of workers were quantified by high performance liquid chromatography-mass spectrometry in two different seasons (April and December). The results showed that, in N. takasagoensis, JH titer in male minor workers was consistently higher than those in other worker types. In R. speratus, in contrast, there were no significant differences in JH titers between male and female workers. These results suggested that, in N. takasagoensis, male minor workers maintain JH titers at a high level throughout a year, and this may cause the male-biased presoldier differentiation.
    No preview · Article · Feb 2016 · Journal of insect physiology