Cytokine & growth factor reviews

Publisher: Elsevier

Current impact factor: 5.36

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 5.357
2013 Impact Factor 6.537
2012 Impact Factor 8.831
2011 Impact Factor 7.812
2010 Impact Factor 8.239
2009 Impact Factor 6.489
2008 Impact Factor 7.022
2007 Impact Factor 11.816
2006 Impact Factor 11.549
2005 Impact Factor 9.075
2004 Impact Factor 9.926
2003 Impact Factor 9.6
2002 Impact Factor 9.707
2001 Impact Factor 7.674
2000 Impact Factor 6.049

Impact factor over time

Impact factor
Year

Additional details

5-year impact 7.97
Cited half-life 8.30
Immediacy index 0.84
Eigenfactor 0.01
Article influence 2.56
ISSN 1879-0305

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: S100A7 (psoriasin), an EF-hand type calcium binding protein and localized in epithelial cells, regulates cell proliferation and differentiation. A S100A7 overexpression may occur in response to inflammatory stimuli, such in psoriasis, a chronic inflammatory autoimmune-mediated skin disease. Increasing evidence suggests that S100A7 plays critical roles in amplifying the inflammatory process in psoriatic skin, perpetuating the disease phenotype. This review will discuss the interactions between S100A7 and cytokines in psoriatic skin. Furthermore, we will focus our discussion on regulation and functions of S100A7 in psoriasis. Finally, we will discuss the possible use of S100A7 as therapeutic target in psoriasis.
    No preview · Article · Jan 2016 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pleiotropic actions of Bone Morphogenetic Proteins in many different tissues has led us to the conclusion that they may be viewed as Body Morphogenetic Proteins (BMPs). This is supported by a broad range of distinct BMP-related diseases. Here, we summarize highlights from the 10th international BMP conference, which took place from September 16th to 20th 2014 in Berlin. Attendees updated us on recently identified common and context-specific mechanisms of BMP signaling and function. This included for example new insights into BMP pro-domains, BMP receptors, role of BMPs in muscle and novel consequences of ACVRI mutations. Currently, new BMPs are entering clinical trials with the BMP pathway considered as a ‘druggable’ target. We conclude that various recent and ongoing approaches could indeed help patients in the near future.
    No preview · Article · Jan 2016 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: NF-κB pathway has long been considered as one of the potent prototypical pro-inflammatory signaling pathway and its role in several aspects of human health has been established. Recent studies have suggested that NF-κB activation is the master key in early development and pathobiology of several Cancers. Curcumin is a polyphenolic phytochemical compound with several stablished anti-inflammatory properties and is known to exert its anti-inflammatory effects mostly by interrupting NF-κB signaling pathway at multiple stages. Here we tried to provide a summary of recent finding, focusing on introducing NF-κB signaling pathways and its potential mechanism involved in development of several types of Cancers.
    No preview · Article · Jan 2016 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Levels of serum amyloid A (SAA), a major acute phase protein in humans, are increased up to 1000-fold upon infection, trauma, cancer or other inflammatory events. However, the exact role of SAA in host defense is yet not fully understood. Several pro- and anti-inflammatory properties have been ascribed to SAA. Here, the regulated production of SAA by cytokines and glucocorticoids is discussed first. Secondly, the cytokine and chemokine inducing capacity of SAA and its receptor usage are reviewed. Thirdly, the direct (via FPR2) and indirect (via TLR2) chemotactic effects of SAA and its synergy with chemokines are unraveled. Altogether, a complex cytokine–SAA–chemokine network is established, in which SAA plays a key role in regulating the inflammatory response.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic sclerosis (SSc) is an autoimmune connective tissue disease that is characterized by vasculopathy and excessive deposition of extracellular matrix, which causes fibrosis of the skin and internal organs and eventually leads to multiorgan dysfunction. Studies have shown that CD4(+) T cell activation is a key factor in the pathogenesis of scleroderma because activated T cells can release various cytokines, resulting in inflammation, microvascular damage and fibrosis. T helper cell 17 (Th17) and regulatory T (Treg) cell activities are a hallmark SSc, as Th17-type cytokines can induce both inflammation and fibrosis. More recently, several studies have reported new T cell subsets, including Th9 and Th22 cells, along with their respective cytokines in the peripheral blood, serum and skin lesions of individuals with SSc. Herein, we review recent data on various CD4(+) T helper cell subsets in SSc, and discuss potential roles of these cells in promoting inflammation and fibrosis.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activin receptor-like kinase-2 (ALK2), the product of ACVR1, is a member of the type I bone morphogenetic protein (BMP) receptor family. ALK2 exerts key and non-redundant roles in numerous developmental processes, including the specification, growth and morphogenesis of endochondral skeletal elements. There is also strong evidence that BMP signaling plays important roles in determination, differentiation and function of neural cells and tissues. Here we focus on the intriguing discovery that common activating mutations in ALK2 occur in Fibrodysplasia Ossificans Progressiva (FOP) and Diffuse Intrinsic Pontine Gliomas (DIPGs), distinct pediatric disorders of significant severity that are associated with premature death. Pathogenesis and treatment remain elusive for both. We consider recent studies on the nature of the ACVR1 mutations, possible modes of action and targets, and plausible therapeutic measures. Comparisons of the diverse – but genetically interrelated – pathologies of FOP and DIPG will continue to be of major mutual benefit with broad biomedical and clinical relevance.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
    No preview · Article · Dec 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (hPSCs) can form all somatic cells of the body. They thus offer opportunities for understanding (i) the basic steps of early human development, (ii) the pathophysiology in human degenerative diseases and (iii) approaches to regenerative medicine and drug development. Methods for improving their differentiation to defined mesodermal derivatives in particular will benefit their use in all of these areas but most particularly applications that require cardiac and vascular tissue. However, the molecular mechanisms that regulate mesodermal development in humans are still poorly understood. Gene ablation studies in mice have shown that the signaling pathways activated by the transforming growth factor beta (TGFβ) superfamily, including the bone morphogenetic proteins (BMP), play crucial roles in mesoderm differentiation and patterning the early embryo. Understanding their interplay and interaction with other signaling pathways, how they activate and inhibit transcription factors and epigenetic regulators during self-renewal, maintenance and exit from pluripotency and differentiation could provide vital information for a range of applications. This includes disease modeling when the hPSCs are derived from patients or drug screens for diseases of mesodermal organs. Here, we review the role of the BMP-SMAD signaling pathway in pluripotent stem cells and during mesoderm differentiation with focus on the cells that make up the cardiovascular system.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, the clinical application of BMP2 (bone morphogenetic protein 2) has helped an increasing number of patients achieve bone regeneration in a clinical area lacking simple solutions for difficult bone healing situations. In this review, the historical aspects and current critical clinical issues are summarized and positioned against new research findings on efficacy and function of BMP2. Knowledge concerning how the dose of this growth factor as well as its interaction with mechanical loading influences the efficacy of bone regeneration, might open possible future strategies in cases where bony bridging is unachievable so far. In conclusion, it is apparent that there is a substantial need for continued basic research to unravel the details of its function and the underlying signaling pathways involved, to make BMP2 even more relevant and safe in daily clinical use, even though this growth factor has been known for more than 125 years.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic proteins (BMPs) act as morphogens to control patterning and growth in a variety of developing tissues in different species. How BMP morphogen gradients are established and interpreted in the target tissues has been extensively studied in Drosophila melanogaster. In Drosophila, Decapentaplegic (Dpp), a homologue of vertebrate BMP2/4, acts as a morphogen to control dorsal-ventral patterning of the early embryo and anterior-posterior patterning and growth of the wing imaginal disc. Despite intensive efforts over the last twenty years, how the Dpp morphogen gradient in the wing imaginal disc forms remains controversial, while gradient formation in the early embryo is well understood. In this review, we first focus on the current models of Dpp morphogen gradient formation in these two tissues, and then discuss new strategies using genome engineering and nanobodies to tackle open questions.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early pattering of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.
    No preview · Article · Nov 2015 · Cytokine & growth factor reviews