Analytica chimica acta

Publisher: Elsevier Masson

Current impact factor: 4.51

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.513
2013 Impact Factor 4.517
2012 Impact Factor 4.387
2011 Impact Factor 4.555
2010 Impact Factor 4.31
2009 Impact Factor 3.757
2008 Impact Factor 3.146
2006 Impact Factor 2.894
2005 Impact Factor 2.76
2004 Impact Factor 2.588
2003 Impact Factor 2.21
2002 Impact Factor 2.114
2001 Impact Factor 2.073
2000 Impact Factor 1.849
1999 Impact Factor 1.894
1998 Impact Factor 1.692
1997 Impact Factor 1.778
1996 Impact Factor 1.874
1995 Impact Factor 1.887
1994 Impact Factor 1.696
1993 Impact Factor 1.734
1992 Impact Factor 2.033

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.67
Cited half-life 7.60
Immediacy index 0.82
Eigenfactor 0.06
Article influence 1.07
ISSN 1873-4324

Publisher details

Elsevier Masson

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 01/05/2015
    • 'Elsevier Masson' is an imprint of 'Elsevier'
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol–gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol–gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM−1 and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel diffusive sampler that combines radial and axial diffusion has been developed that improves upon existing commercially available designs. The POcket Diffusive (POD) sampler has been validated under laboratory and field conditions for the measurements of VOCs in ambient air. Laboratory tests varied sampling conditions of temperature (−30–40 C), humidity (10–80%), wind velocity (0.1–4 m s−1), and concentration (0.5–50 μg m−3) for a number of specific VOCs. An overall uncertainty of circa 9% for the measurement of benzene is calculated for the validation tests, in compliance with the data quality objectives of the EU air quality directive 2008/50/EC. A semi-empirical diffusion model has been developed to estimate sampling rates for compounds that were not tested, and for conditions outside of tested ranges during validation. The diffusion model (and validation tests) shows a low influence of environmental conditions on the sampling rate for the POD sampler. Average reproducibility values of circa 3% are reported with overall sampling uncertainties ranging from 9% to 15%, for the whole range of tested conditions, depending on the compound. The adsorbent cartridge is compatible with existing thermal desorption systems in the market. The diffusive sampler can modify the sampling rate by changing the diffusive body within a range of different porosities. Field tests, conducted in parallel with independent quality controlled canister sampling, confirmed the ease of use and quality of VOC measurements with the POD sampler, for compounds that were, and were not, evaluated during laboratory tests.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibody (mAb) therapeutics attract the largest concern due to their strong therapeutic potency and specificity. The Fc region of mAbs is common to many new biotherapeutics as biosimilar, antibody drug conjugate or fusion protein. Fc region has consequences for Fc-mediated effector functions that might be desirable for therapeutic applications. As a consequence, there is a continuous need for improvement of analytical methods to enable fast and accurate characterization of biotherapeutics. Capillary zone electrophoresis-Mass spectrometry couplings (CZE-MS) appear really attractive methods for the characterization of biological samples. In this report, we used CZE-MS systems developed in house and native MS infusion to allow precise middle-up characterization of Fc/2 variant of cetuximab. Molecular weights were measured for three Fc/2 charge variants detected in the CZE separation of cetuximab subunits. Two Fc/2 C-terminal lysine variants were identified and separated. As the aim is to understand the presence of three peaks in the CZE separation for two Fc/2 subunits, we developed a strategy using CZE-UV/MALDI-MS and CZE-UV/ESI-MS to evaluate the role of N-glycosylation and C-terminal lysine truncation on the CZE separation. The chemical structure of N-glycosylation expressed on the Fc region of cetuximab does not influence CZE separation while C-terminal lysine is significantly influencing separation. In addition, native MS infusion demonstrated the characterization of Fc/2 dimers at pH 5.7 and 6.8 and the first separation of these dimers using CZE-MS.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we developed a simple and sensitive method for the detection of cysteine (Cys) by employing terbium ion (Tb3+)-promoted G-qudraplex (G4/Tb) as a luminescent probe, which is based on Ag+-mediated conformational change of G4/Tb. Due to Ag+ is able to compete with Tb3+ to bind guanine at G4, the presence of Ag+ can lead to the formation of G4/Tb–Ag+ complex and disrupt the structure of G4/Tb. Meanwhile, the binding of Ag+ with G4/Tb will also cause the alteration of the excited state of G4 and more efficient energy transfer from G4 to Tb3+, enhancing the luminescence of G4/Tb. However, upon the addition of Cys, Ag+ will be released from G4/Tb–Ag+ complex because of the high affinity of Cys to Ag+. This results in the re-formation of the conformation of G4/Tb and the decrease of the luminescence of G4/Tb. So, Ag+-enhanced luminescence of G4/Tb is associated with its conformational transformation. As a luminescent probe for Cys, G4/Tb not only shows excellent selectivity and sensitivity with a detection limit of 20 nM, but also possesses the features of simple preparation, easy reproducibility, and eliminating the interferences from background fluorescence. We envision that the presented strategy might provide new insight into the biosensing applications of lanthanide complex.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd2+-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd2+ in varying concentrations. It is experimentally observed that 50 and 100 μM Cd2+ caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd2+ concentration. The Cd2+ was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd2+ stress is realized by the methodology presented.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is ubiquitous in humans and the environment. Its potential adverse effects through genomic and non-genomic pathways have fostered BPA replacement by bisphenol analogs that, unfortunately, exert similar adverse effects. Many of these analogs, as well as their derivatives, have already found in humans and the environment and major concerns have arisen over their low dose- and mixture-related effects. This review aims to discuss the characteristics of the main analytical methods reported so far for the determination of mixtures of bisphenol analogs and/or derivatives in human and environmental exposure sources and biological fluids. Approaches followed for removal of background contamination, sample preparation and separation and detection of mixtures of bisphenols and derivatives are critically discussed. Sample treatment is matrix-dependent and common steps include analyte isolation, removal of interferences, evaporation of the extracts and solvent reconstitution. Separation and quantification has been almost exclusively carried out by liquid chromatography tandem mass spectrometry (LC-MS/MS) or gas chromatography mass spectrometry (GC–MS), in the last case prior derivatization, but LC-fluorescence detection has also found some applications. Main characteristics, advantages and drawbacks of these methods will be comparatively discussed. Although at an early stage, some approaches for the assessment of the risk to mixtures of bisphenols, mainly based on the combination of chemical target analysis and toxicity evaluation, have been already applied and they will be here presented. Current knowledge gaps hindering a reliable assessment of human and environmental risk to mixtures of bisphenols and derivatives will be outlined.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, l-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (l-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples.
    No preview · Article · Jan 2016 · Analytica chimica acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg2+) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed. Upon addition of Hg2+, the Y-DNA structure was transformed to hairpin structure based on the formation of T-Hg2+-T complex. During the transformation, the redox MB gets close to and the redox Fc gets far away from the electrode surface, respectively. This special design allows a reliable Hg2+ detection with a detection range from 1 nM to 5 μM and a low detection limit down to 0.094 nM. Furthermore, this biosensor exhibits good selectivity and repeatability, and can be easily regenerated by using l-cysteine. This study offers a simple and effective method for designing ratiometric biosensors for detecting other ions and biomolecules.
    No preview · Article · Jan 2016 · Analytica chimica acta