Biophysical chemistry

Publisher: Elsevier

Current impact factor: 1.99

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.986
2013 Impact Factor 2.319
2012 Impact Factor 2.283
2011 Impact Factor 2.203
2010 Impact Factor 2.108
2009 Impact Factor 2.276
2008 Impact Factor 2.362
2007 Impact Factor 1.913
2006 Impact Factor 1.784
2005 Impact Factor 1.925
2004 Impact Factor 2.102
2003 Impact Factor 1.728
2002 Impact Factor 1.494
2001 Impact Factor 1.918
2000 Impact Factor 1.578
1999 Impact Factor 1.498
1998 Impact Factor 1.522
1997 Impact Factor 1.596
1996 Impact Factor 2.294
1995 Impact Factor 1.696
1994 Impact Factor 1.157
1993 Impact Factor 1.059
1992 Impact Factor 1.314

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.00
Cited half-life >10.0
Immediacy index 0.87
Eigenfactor 0.01
Article influence 0.64
ISSN 1873-4200

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The binding free energy of 4-bromophenol (4-BP), an inhibitor that binds in the internal binding site in dehaloperoxidase-hemoglobin (DHP) was calculated using Molecular Dynamics (MD) methods combined with pulling or umbrella sampling. The effects of systematic changes in the pulling speed, pulling force constant and restraint force constant on the calculated potential of mean force (PMF) are presented in this study. The PMFs calculated using steered molecular dynamics (SMD) were validated by umbrella sampling (US) in the strongly restrained regime. A series of restraint force constants ranging from 1000 down to 5 kJ/(mol nm2) were used in SMD simulations. This range was validated using US, however noting that weaker restraints give rise to a broader sampling of configurations. This comparison was further tested by a pulling simulation conducted without any restraints, which was observed to have a value closest to the experimentally measured free energy for binding of 4-BP to DHP based on ultraviolet–visible (UV–vis) and resonance Raman spectroscopies. The protein-inhibitor system is well suited for fundamental study of free energy calculations because the DHP protein is relatively small and the inhibitor is quite rigid. Simulation configuration structures are compared to the X-ray crystallography structures of the binding site of 4-BP in the distal pocket above the heme
    No preview · Article · Jan 2016 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A reaction–diffusion model of a muscle sarcomere was developed to evaluate the sensitivity of force characteristics to diffusion and Ca2 +-cycling components. The model compared well to experimental force measurements. Diffusion led to Ca2 + gradients that enhanced maximal force and accelerated relaxation compared to when diffusion was infinitely fast. However, a modest increase in sarcomere length or radius led to a decrease in maximal force. Lowering the Ca2 + release rate caused a lower maximal force, but increasing the rate led to only modest gains in maximal force while incurring much greater ATP costs associated with reuptake. Greater parvalbumin binding rates decreased maximal force but enhanced relaxation, and this effect was magnified when Ca2 + uptake rates were lowered as may occur during fatigue. These results show a physiological set of parameters that lead to a functional sarcomere of known dimensions and contractile function, and the effects of parameter variation on muscle function.
    No preview · Article · Jan 2016 · Biophysical chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The path to the discovery of the actoclampins began with efforts to define profilin's role in actin-based pathogen and endosome rocketing. That research identified a set of FPPPP-containing cargo proteins and FPPPP-binding proteins that are consistently stationed within the polymerization zone during episodes of active motility. The very same biophysical clues that forced us to abandon Brownian Ratchet models guided us to the Actoclampin Hypothesis, which asserts that every propulsive filament possesses a (+)-end-tracking motor that generates the forces cells need to crawl. Each actoclampin motor is a multi-arm oligomeric complex, employing one arm to recruit/deliver Profilin•Actin•ATP to a growth-site located at the (+)-end of the lagging subfilament, while a second arm maintains an affinity-modulated binding interaction with the extreme (+)-end of the other subfilament. The alternating actions of these arms define a true molecular motor, the processivity of which explains why propelling filaments maintain full possession of their cargo. The Actoclampin Hypothesis also suggests how the energetics of tracker interactions with the (+)-end determines whether a given actoclampin is a passive (low force-producing) or active (high force-producing) motor, the latter requiring the Gibbs free energy of ATP hydrolysis. Another aim of this review is to acknowledge an earlier notional model that emerged from efforts to comprehend profilin's pivotal role(s) in actin-based cell motility.
    Full-text · Article · Dec 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binding of glycoprotein Ibα to von Willebrand factor induces platelet adhesion to injured vessel walls and initiates a multistep hemostatic process. It has been hypothesized that the flow condition could induce a loop to β-sheet conformational change in the β-switch region of glycoprotein Ibα, which regulates it binding to the von Willebrand factor and facilitates the blood clot formation and wound healing. In this work, direct molecular dynamics (MD), flow MD and metadynamics, were employed to investigate the mechanisms of this flow induced conformational transition process. Specifically, the free energy landscape of the whole transition process was drawn by metadynamics with the path collective variable approach. The results reveal that without flow, the free energy landscape has two main basins, including a random loop basin stabilized by large conformational entropy and a partially folded β-sheet basin. The free energy barrier separating these two basins is relatively high and the β-switch could not fold from loop to β-sheet state spontaneously. The fully β-sheet conformations located in high free energy regions, which are also unstable and gradually unfold into partially folded β-sheet state with flow. Relatively weak flow could trigger some folding of the β-switch but could not fold it into fully β-sheet state. Under strong flow conditions, the β-switch could readily overcome the high free energy barrier and fold into fully β-sheet state.
    No preview · Article · Dec 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identifying protein-DNA interactions is essential to understand the regulatory networks of cells and their influence on gene expression. In this study, we use native electrospray mass spectrometry (ESI-MS) to investigate how the heterodimerization of retinoic acid receptor-retinoid X receptor (RAR-RXR) is mediated by DNA sequence. In presence of various RAR response elements (RAREs), three oligomeric states of RAR-RXR DNA binding domains (DBDs) bound to RAREs (monomer, homo- or heterodimers) were detected and individually monitored to follow subunit assembly and disassembly upon RAREs' abundancy or sequence. In particular, a cooperative heterodimerization was shown with RARb2 DR5 (5 base pair spaced direct repeat) while a high heterogeneity reflecting random complex formation could be observed with the DR0 response elements, in agreement with native gel electrophoresis data or molecular modeling. Such MS information will help to identify the composition of species formed in solution and to define which DR sequence is specific for RAR-RXR heterodimerization.
    No preview · Article · Nov 2015 · Biophysical chemistry

  • No preview · Article · Nov 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome c (Cyt c) is an essential component of the inner mitochondrial respiratory chain because of its function of transferring electrons. The feature is closely related to the interaction between Cyt c and membrane lipids. We used Langmuir-Blodgett monolayer technique combined with AFM to study the interaction of Cyt c with lipid monolayers at air-buffer interface. In our work, by comparing the mixed Cyt c-anionic (DPPS) and Cyt c-zwitterionic (DPPC/DPPE) monolayers, the adsorption capacity of Cyt c on lipid monolayers is DPPS>DPPE>DPPC, which is attributed to their different headgroup structures. π-A isothermal data show that Cyt c (v=2.5μL) molecules are at maximum adsorption quantity on lipid monolayer. Moreover, Cyt c molecules would form aggregations and drag some lipids with them into subphase if the protein exceeds the maximum adsorption quantity. π-T curve indicates that it takes more time for Cyt c molecular conformation to rearrange on DPPE monolayer than on DPPC. The compressibility study reveals that the adsorption or intermolecular aggregation of Cyt c molecules on lipid monolayer will change the membrane fluidization. In order to quantitatively estimate Cyt c molecular adsorption properties on lipid monolayers, we fit the experimental isotherm with a simple surface state equation. A theoretical model is also introduced to analyze the liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC monolayer. The results of theoretical analysis are in good agreement with the experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
    No preview · Article · Oct 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tau has long been associated with Alzheimer's disease, where it forms neurofibrillary tangles. Here we show for the first time by electron microscopy that MAP2c prevents arachidonic acid-induced in vitro aggregation of tau. However, phosphorylated MAP2c failed to prevent the same. Previously we reported that MAP2c possesses chaperone-like activity while tau does not (Sarkar et al., 2004, Eur J Biochem., 271(8), 1488-96). Here we demonstrate that phosphorylation severely impaired the chaperone activity of MAP2c, implying a crucial role of chaperone in preventing tau fibrillation. Additionally, the ability of MAP2c to induce microtubule polymerization was abolished completely upon phosphorylation. As tau and MAP2c possess highly homologous C-termini, we speculated that the N-terminus of MAP2c might account for its chaperone activity. Nevertheless, experiments showed that N-terminus of MAP2c alone is inactive as a chaperone. Our preliminary findings suggest that MAP2c/MAP2 could be one of the regulators maintaining tau homeostasis in the cell. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Oct 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney.
    No preview · Article · Oct 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to the cancer stem cell theory malignant glioma is incurable because of the presence of the cancer stem cells - a subpopulation of cells that are resistant to therapy and cause the recurrence of a tumor after surgical resection. Several protein markers of cancer stem cell were reported but none of those is fully reliable to grade the content of stem cells in a tumor. Hereby we propose Fourier transform infrared (FTIR) microspectroscopy as an alternative, labelfree, non-damaging and fast method to identify glioma stem cells based on their own spectral characteristics. The analysis of FTIR data revealed that in NCH421k cells, a model of glioma stem cells, the relative content of lipids is higher than in their all-trans retinoic acid-differentiated counterparts. Moreover, it has been assessed that stem cells have more rigid cellular membranes and more phosphorylated proteins, whereas after differentiation glycogen level increases. The ability of FTIR to estimate the content of stem cells in a heterogeneous sample, on the base of the identified spectral markers, and to classify stem and non-stem cells into two separate populations was probed. Although it was not possible to calculate the exact percentage of each subpopulation, we could clearly see that with the increasing amount of differentiated cells in a sample, more hits occupy the PC space previously identified as a space of differentiated cells. The present study is therefore an initial step towards the development of a FTIR based protocol in clinical practice to estimate the content of stem cells in a tumor sample.
    No preview · Article · Oct 2015 · Biophysical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.
    No preview · Article · Sep 2015 · Biophysical chemistry