Journal of hazardous materials

Publisher: Elsevier

Current impact factor: 4.53

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.529
2013 Impact Factor 4.331
2012 Impact Factor 3.925
2011 Impact Factor 4.173
2010 Impact Factor 3.723
2009 Impact Factor 4.144
2008 Impact Factor 2.975
2007 Impact Factor 2.337
2006 Impact Factor 1.855
2005 Impact Factor 1.544
2004 Impact Factor 1.433
2003 Impact Factor 1.099
2002 Impact Factor 0.823
2001 Impact Factor 0.497
2000 Impact Factor 0.424
1999 Impact Factor 0.849
1998 Impact Factor 0.672
1997 Impact Factor 0.608
1996 Impact Factor 0.545
1995 Impact Factor 0.597
1994 Impact Factor 0.497
1993 Impact Factor 0.671
1992 Impact Factor 0.511

Impact factor over time

Impact factor

Additional details

5-year impact 5.28
Cited half-life 5.40
Immediacy index 0.66
Eigenfactor 0.13
Article influence 1.11
ISSN 1873-3336

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Thifluzamide is a fungicide widely used to control crop diseases, and it therefore constitutes a hazard to the environment. In this study, zebrafish were selected to assess the aquatic toxicity of thifluzamide. The acute and development toxicity of thifluzamide to embryos, larvae, and adult zebrafish were measured and the corresponding 96 h-LC50 values were as follows: adult fish (4.19 mg/L) <larvae (3.52 mg/L) <embryos (3.08 mg/L). A large suite of symptoms was found in these three stages of zebrafish, including abnormal spontaneous movement, slow heartbeat, hatching inhibition, growth regression, and morphological deformities. In addition, for adult zebrafish, distinct pathological changes were noted in liver and kidney 21 days post exposure (dpe) to 0.19, 1.33, and 2.76 mg/L. Liver damage was more severe than kidney damage. In another 28 days exposure of adult zebrafish to 0.019, 0.19, and 1.90 mg/L, negative changes in mitochondrial structure and enzymes activities [succinate dehydrogenase (SDH) and respiratory chain complexes] were found. These might be responsible for the adverse expansion of the apoptosis- and immune-related genes, which would facilitate the action of these factors in programmed cell death and might play a key role during the toxic events.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2–5 μm in planar size and 35–55 nm in thickness, and ∼16 m2/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20 min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20 min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by 1H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and Zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6−, NTf2− and NfO−. Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against Zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1 mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12 h SDS (0.1 μM to 0.2 mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8 mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study provides a decision-support framework and a design methodology for preliminary evaluation of field application of in-situ activated carbon (AC) amendment to sediment to control the (bio)availability of hydrophobic organic contaminants. The decision-making framework comprises four sequential steps: screening assessment, input parameter determination, model prediction, and evaluation for process optimization. The framework allows the application of state-of-the-art experimental and modeling techniques to assess the effectiveness of the treatment under different field conditions and is designed for application as a part of a feasibility study. Through a stepwise process it is possible to assess the effectiveness of in-situ AC amendment with a proper consideration of different site conditions and application scenarios possible in the field. The methodology incorporates the effect of various parameters on performance including: site-specific kinetic coefficients, varied AC dose and particle size, sediment and AC sorption parameters, and pore-water velocity. The modeling framework allows comparison of design alternatives for treatment optimization and estimation of long-term effectiveness over a period of 10-20 years under slow mass transfer in the field.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: BEAS-2B cells were sub-chronically exposed (up to 4 weeks) to low doses of multi-walled carbon nanotubes (MWCNT, NM403). Genotoxic effects were evaluated using the comet and the micronucleus (MN) assays at three different time-points. The expression of different interleukins (IL) such as IL-1B, IL-6 and IL-8, as well as HO-1 as stress marker, was assessed after 3 weeks treatments. As a hallmark biomarker of cell-transforming ability we used the soft-agar assay, which detects anchorage-independent cell growth. Our results show high levels of intracellular reactive oxygen species (ROS) associated to MWCNT exposure. Nevertheless, an important proportion of these ROS levels seems to be associated to solubilized metals contaminants present in NM403, more than to the internalized MWCNT. No primary DNA damage was obtained in the Comet assay although significant levels of chromosome damage were detected using the micronucleus assay. A significant decrease in the expression of the studied cytokines was observed and significant increases in the number of induced colonies were obtained when the ability of induce anchorage-independent growth was determined. These results show that chromosome damage and reducing inflammatory signalling correlated with an increase in attachment-independent growth associated with sub-chronic MWCNT exposure.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: The critical assay of carbon black concentration suffers from the lack of available methods, especially in-situ methods suitable for nanoparticles. We propose a useful tool for monitoring carbon nanoparticles concentration in liquids by means of RGB imaging, fluorescence and conductivity measurements. In this study carbon black particles of 25–75 nm size were dispersed within two types of “green” liquids (1-butyl-3-methyl imidazolium based ionic liquids and glycerol) and the effect of carbon nanoparticles concentration on the liquids properties was measured. The conductivity of all the liquids increased with carbon concentration, while the slope of the curve was liquid dependent. The fluorescence intensity of ionic liquids decreased dramatically even when a small amount of carbon was added, while water-containing ionic liquids had a more moderate behavior. Glycerol has no native fluorescence, therefore, a known tracer present in soot (dibenzothiophene), having a characteristic fluorescence monitored by synchronous scan mode, was used. The carbon black effect on RGB imaging shows a linear dependence, while the red counts decreases with contamination. The proposed methods are simple and low-cost but nonetheless sensitive.
    No preview · Article · Apr 2016 · Journal of hazardous materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple hydrothermal route was used to synthesize In4Sn3O12 nanoparticles and In4Sn3O12-TeO2 composite nanoparticles, with In(C2H3O2)3, SnCl4, and TeCl4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5-100ppm) of CO gas at different temperatures (100-300°C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In4Sn3O12-TeO2 composite nanoparticles showed stronger response to CO than its pure In4Sn3O12 counterpart. The response of the In4Sn3O12-TeO2 composite-nanoparticle sensor to 100ppm of CO at 200°C was 10.21, whereas the maximum response of the In4Sn3O12 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73s under these conditions, which is less than one-third of that of the In4Sn3O12 sensor. The improved sensing performance of the In4Sn3O12-TeO2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In4Sn3O12-TeO2 interface, the stronger oxygen adsorption of p-type TeO2, and the formation of preferential adsorption sites.
    No preview · Article · Mar 2016 · Journal of hazardous materials