Mechanisms of ageing and development

Publisher: Elsevier

Current impact factor: 3.40

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 3.397
2013 Impact Factor 3.51
2012 Impact Factor 3.264
2011 Impact Factor 3.439
2010 Impact Factor 4.857
2009 Impact Factor 4.179
2008 Impact Factor 3.915
2007 Impact Factor 4.308
2006 Impact Factor 3.846
2005 Impact Factor 2.812
2004 Impact Factor 2.866
2003 Impact Factor 3.214
2002 Impact Factor 2.867
2001 Impact Factor 1.841
2000 Impact Factor 1.897
1999 Impact Factor 1.788
1998 Impact Factor 1.583
1997 Impact Factor 1.143
1996 Impact Factor 0.89
1995 Impact Factor 1.182
1994 Impact Factor 1.124
1993 Impact Factor 1.349
1992 Impact Factor 1.571

Impact factor over time

Impact factor
Year

Additional details

5-year impact 3.75
Cited half-life 9.40
Immediacy index 0.77
Eigenfactor 0.01
Article influence 1.06
ISSN 1872-6216

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus is an important risk factor for the development of Alzheimer's disease, i.e. the patients with type 2 diabetes mellitus are frequently companied with Alzheimer's disease symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Emerging evidences suggest that defects in galanin play a central role on type 2 diabetes mellitus and is considered to be a risk factor for Alzheimer's disease development. This review provides a new insight into the multivariate relationship among galanin, type 2 diabetes mellitus and Alzheimer's disease, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and Alzheimer's disease feature in animal models. These may help us better understanding the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches to treat type 2 diabetes mellitus and Alzheimer's disease. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Aug 2015 · Mechanisms of ageing and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    No preview · Article · Jul 2015 · Mechanisms of ageing and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Alzheimer's disease (AD), activated microglia invade and surround β-amyloid plaques, possibly contributing to the aggregation of amyloid β (Aβ), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PS1 transgenic mice were treated with yonk (2, 6, or 18mg/kg, intraperitoneal injection (i.p.)) or sildenafil (sild) (6mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of Aβ plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PS1 mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX(+) cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Jul 2015 · Mechanisms of ageing and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ageing affects most, if not all, functional systems in the body. For example, the somatic motor nervous system, responsible for initiating and regulating motor output to skeletal musculature, is vulnerable to ageing. The nigrostriatal dopamine pathway is one vulnerable component of this system with deficits in dopamine signalling contributing to major motor dysfunction, as exemplified in Parkinson's disease (PD). However, while the dopamine deficit in PD is due to degeneration of substantia nigra (SN) dopamine (DA) neurons, it is unclear whether there is sufficient loss of SN DA neurons with ageing to explain observed motor impairments. Instead, evidence suggests that age-related loss of DA neuron function may be more important than frank cell loss. To further elucidate the mechanisms of functional decline, we have investigated age-related changes in gene expression specifically in laser microdissected SN DA neurons. There were significant age-related changes in the expression of genes associated with neurotrophic factor signalling and the regulation of tyrosine hydroxylase activity. Furthermore, reduced expression of the DA neuron-associated transcription factor, Nurr1, may contribute to these changes. Together, these results suggest that altered neurotrophic signalling and tyrosine hydroxylase activity may contribute to altered DA neuron signalling and motor nervous system regulation in ageing. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Jun 2015 · Mechanisms of ageing and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SKN-1/Nrf transcription factors are master regulators of oxidative stress responses and are emerging as important determinants of longevity. We previously identified a protein named WDR-23 as a direct repressor of SKN-1 in C. elegans. Loss of wdr-23 influences stress resistance, longevity, development, and reproduction, but it is unknown if WDR-23 influences development and reproduction solely through SKN-1 and the mechanisms by which SKN-1 promotes stress resistance and longevity are poorly defined. Here, we characterize phenotypes of wdr-23 and skn-1 manipulation and explore the role of glutathione. We provide evidence that diverse wdr-23 phenotypes are dependent on SKN-1, that beneficial and detrimental phenotypes of wdr-23 and skn-1 can be partially decoupled, and that SKN-1 activation delays degenerative tissue changes during aging. We also show that total glutathione levels are substantially elevated when the wdr-23/skn-1 pathway is activated and that skn-1 is required for preserving this cellular antioxidant during stress and aging. Alternatively, total glutathione was not elevated in worms with reduced insulin/IGF-1-like signaling or dietary restriction suggesting that SKN-1 ensures longevity via different mechanisms under these conditions. Lastly, genetic interaction data revise our understanding of which skn-1 variants are required for longevity during dietary restriction. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Jun 2015 · Mechanisms of ageing and development