European Journal of Medicinal Chemistry (EUR J MED CHEM)

Publisher: Elsevier

Journal description

The European Journal of Medicinal Chemistry publishes studies on all aspects of medicinal chemistry: Organic synthesis; Biological behavior; Pharmacological activity; Drug design; QSAR; Molecular Modeling; Drug-receptor interactions; Molecular aspects of drug metabolism; Prodrug synthesis and Drug targeting. The journal accepts papers from any country, European or otherwise, and provides a medium for publication of original papers, laboratory notes, short or preliminary communications, new products and invited reviews.

Current impact factor: 3.45

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 3.447
2013 Impact Factor 3.432
2012 Impact Factor 3.499
2011 Impact Factor 3.346
2010 Impact Factor 3.193
2009 Impact Factor 3.269
2008 Impact Factor 2.882
2007 Impact Factor 2.301
2006 Impact Factor 2.187
2005 Impact Factor 2.022
2004 Impact Factor 1.673
2003 Impact Factor 1.681
2002 Impact Factor 1.705
2001 Impact Factor 1.077
2000 Impact Factor 1.306
1999 Impact Factor 1.074
1998 Impact Factor 1.116
1997 Impact Factor 0.809
1996 Impact Factor 0.675
1995 Impact Factor 0.746
1994 Impact Factor 0.775
1993 Impact Factor 0.716
1992 Impact Factor 0.624

Impact factor over time

Impact factor

Additional details

5-year impact 3.95
Cited half-life 4.70
Immediacy index 0.79
Eigenfactor 0.04
Article influence 0.72
Website European Journal of Medicinal Chemistry website
Other titles European journal of medicinal chemistry (Online), Eur j med chem
ISSN 1768-3254

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural products, especially derived from TCMH, have been found to exert antiviral effects against influenza virus. Crenatoside, a phenylethanoid glycoside from Pogostemon cablin Benth, which has been shown as a novel effective NA inhibitor previously, is considered as the leading compound for our further SARs studies. This work presented design, synthesis of novel crenatoside analogues from readily available d-Glucose and l-rhamnose in a convergent manner. Furthermore, their biological activities and SARs were also investigated. Especially, compound 2 h showed impressive IC50 = 27.77 μg/mL against NAs, which is 3 folds more potent than the leading compound crenatoside (IC50 = 89.81 μg/mL). These results would promise their therapeutic potential for influenza disease.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of 2-aryl-imidazo-pyridines/pyrazines derivatives has been designed, synthesized and evaluated for their biological activities. Among them, several investigated compounds (1a, 3b and 3d) displayed potent antiproliferative activity against HeLa cell, and also displayed comparable tubulin polymerization inhibitory activity to colchicine. These studies provided a new molecular scaffold for the further development of antitumor agents that target tubulin.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is of our interest to generate and identify novel compounds with regulation telomerase for cancer therapy. In order to carry out more rational design, based on structure-based drug design, several series of N-substituted-dihydropyrazole derivatives, totally 78 compounds as potential human telomerase inhibitors were designed and synthesized. The results demonstrated that some compounds had potent anticancer activity against four tumor cell lines, and showed good selectivity on tumor cells over somatic cells. By the modified TRAP assay, compound 13i exhibited the most potent inhibitory activity against telomerase with an IC50 value of 0.98 μM. In vivo evaluation results indicated that compound 13i could inhibit growth of S180 and HepG2 tumor-bearing mice, and it also significantly enhanced the survival rate of EAC tumor-bearing mice. The further results in vivo confirmed that it could significantly improve pathological changes of N,N-diethylnitrosamine (DEN)-induced rat hepatic tumor. These data support further studies to assess rational design of more efficient telomerase inhibitors in the future.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several selective and potent EphB4 inhibitors have been discovered, optimized and biophysically characterized by our groups over the past years. On the outset of these discoveries high throughput docking techniques were applied. Herein, we review the optimization campaigns started from three of these hits (Xan-A1, Pyr-A1 and Qui-A1) with emphasis on their in depth in vitro and in vivo characterization, together with previously unpublished angiogenesis and fluorescence based assays.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tamoxifen (TAM) is a widely used drug in the prophylaxis and treatment of breast cancer.TAM is metabolized to the more active 4-hydroxytamoxifen (4-OH-TAM) and endoxifen by cytochrome P450 (CYP) mainly CYP2D6 and CYP3A4 enzymes. Due to the genetic polymorphisms in CYP2D6 genes, high variation in the clinical outcomes of TAM treatment is observed among women of different populations. To address this issue, novel TAM analogues with possible altered activation pathways were synthesized. These analogues were tested for their antiproliferative action on MCF-7 breast cancer cell lines as well as their binding affinity for estrogen receptor (ER) ER-α and ER-β receptors. These entire novel compounds showed better antiproliferative activity than did TAM on the MCF-7 cells. Moreover, compound 10 exhibited a half maximal growth inhibition (GI50) that was 1000 times more potent than that of TAM (GI50<0.005 μM vs 1.58 μM, respectively). Along with a broad spectrum activity on various cancer cell lines, all the TAM analogues showed considerable activity on the ER-negative breast cancer cell line. For further study, compound 10 was incubated in human liver microsomes (HLM), human hepatocytes (hHEP) and CYP2D6 supersomes. The active hydroxyl metabolite was detected after incubation in HLM and hHEP, implicating the involvement of other enzymes in its metabolism. These results prove that this novel series of TAM analogues might provide improved clinical outcomes for poor 2D6 metabolizers.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dual-specificity tyrosine-regulated kinase 1A (Dyrk1A) has gathered much interest as a pharmacological target in Alzheimer´s disease (AD), but it plays a role in malignant brain tumors as well. As both diseases are multi-factorial, further protein kinases, such as Clk1 and CK2, were proposed to contribute to the pathogenesis. We designed a new class of α-benzylidene–γ-butyrolactone inhibitors that showed low micromolar potencies against Dyrk1A and/or Clk1 and a good selectivity profile among the most frequently reported off-target kinases. A systematic replacement of the heterocyclic moiety gave access to further inhibitor classes with interesting selectivity profiles, demonstrating that the benzylidene heterocycles provide a versatile tool box for developing inhibitors of the CMGC kinase family members Dyr1A/1B, Clk1/4 and CK2. Efficacy for the inhibition of Dyrk1A–mediated tau phosphorylation was demonstrated in a cell-based assay. Multi-targeted but not non-specific kinase inhibitors were also obtained, that co-inhibited the lipid kinases PI3Kα/γ. These compounds were shown to inhibit the proliferation of U87MG cells in the low micromolar range. Based on the molecular properties, the inhibitors described here hold promise for CNS activity.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of acridone-based oxadiazoles 11a-n have been synthesized and evaluated for their anticonvulsant activity against pentylenetetrazole (PTZ)- and maximal electroshock (MES)-induced seizures in mice. Also, their neurotoxicity was evaluated by the rotarod test. Most of the compounds exhibited better anticonvulsant activity and higher safety respect to the standard drug, phenobarbital. Among the tested derivatives, compounds 11l with ED50 value of 2.08 mg/kg was the most potent compound in the PTZ test. The anticonvulsant effect of compound 11l was blocked by flumazenil, suggesting the involvement of benzodiazepine (BZD) receptors in the anticonvulsant activity of prototype compound 11l. Also, docking study of compound 11l in the BZD-binding site of GABAA receptor confirms possible binding of compound 11l with BZD receptors.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis of a series of 5-carba-pterocarpens derivatives involving the cyclization of α-aryl-α-tetralones is described. Several compounds demonstrated potent activity and selectivity in vitro against HCV replicon reporter cells. The best profile in Huh7/Rep-Feo1b replicon reporter cells was observed with 2h (EC50 = 5.5 μM/SI = 20), while 2e was the most active in Huh7.5-FGR-JC1-Rluc2A replicon reporter cells (EC50 = 1.5 μM/SI = 70). Hydroxy groups at A- and D-rings are essential for anti-HCV activity, and substitutions in the A-ring at positions 3 and 4 resulted in enhanced activity of the compounds.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structure-based drug design was utilized to develop novel, 1-hydroxy-2-naphthoate-based small-molecule inhibitors of Mcl-1. Ligand design was driven by exploiting a salt bridge with R263 and interactions with the p2 and p3 pockets of the protein. Significantly, target molecules were accessed in just two synthetic steps, suggesting further optimization will require minimal synthetic effort. Molecular modeling using the Site-Identification by Ligand Competitive Saturation (SILCS) approach was used to qualitatively direct ligand design as well as develop quantitative models for inhibitor binding affinity to Mcl-1 and the Bcl-2 relative Bcl-xL as well as for the specificity of binding to the two proteins. Results indicated hydrophobic interactions with the p2 pockets dominate the affinity of the most favourable binding ligand (3bl: Ki = 31 nM). Compounds were up to 20-fold selective for Mcl-1 over Bcl-xL. Selectivity of the inhibitors was driven by interactions with the deeper p2 pocket in Mcl-1 versus Bcl-xL. The SILCS-based SAR of the present compounds represents the foundation for the development of Mcl-1 specific inhibitors with the potential to treat a wide range of solid tumours and hematological cancers, including acute myeloid leukaemia.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tonantzitlolone A, a diterpene isolated from the Mexican plant Stillingia sanguinolenta, shows cytostatic activity. Both the natural product tonantzitlolone A and its synthetic enantiomer induce monoastral spindle formation in cell experiments which indicates inhibitory activity on kinesin-5 mitotic motor molecules. These inhibitory effects on kinesin-5 could be verified in in vitro single-molecule motility assays, where both tonantzitlolones interfered with kinesin-5 binding to its cellular interaction partner microtubules in a concentration-dependent manner, yet with a larger effect of the synthetic enantiomer. In contrast to kinesin-5 inhibition, both tonantzitlolone A enantiomers did not affect conventional kinesin-1 function; hence tonantzitlolones are not unspecific kinesin inhibitors. The observed stronger inhibitory effect of the synthetic enantiomer demonstrates the possibility to enhance the overall moderate anti-proliferative effect of the lead compound tonantzitlolon A by chemical modification.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nociceptin/orphanin FQ (N/OFQ) and N/OFQ peptide (NOP) receptor are expressed and distributed in various regions such as central nervous system (CNS), peripheral nervous system, immune system, and peripheral tissues. N/OFQ and NOP receptor have important roles on a variety of physiological, pathophysiological, regulatory, and dysregulatory mechanisms in the living body. Both activation and blockade of NOP receptor function have displayed clinical potential of NOP receptor agonists and antagonists for the treatment of various diseases or pathophysiological conditions, respectively. Potent and selective NOP receptor agonists/antagonists are also useful tools to investigate the various mechanisms mediated by NOP receptor–N/OFQ system. As the present study, a series of (4-arylpiperidine substituted-methyl)-[bicyclic (hetero)cycloalkanobenzene] analogs was designed, synthesized, and biologically evaluated in vitro to seek and identify potent and selective, small-molecules of nonpeptide NOP receptor antagonists, which resulted in the discovery of novel potent small-molecule 15 with high human NOP receptor selectivity over human μ receptor. The structure–activity relationship (SAR) of the potency and selectivity, structure–metabolic stability relationship (SMR), and SAR of hERG (human ether-a-go-go related gene) potassium ion channel binding affinity for the analogs in the present studies in vitro provided or suggested significant and/or useful structural determinants and insights for the respective purposes. The superior profiles of compound 15 are discussed with a viewpoint of multisite interactions between ligand and NOP receptor, together with the results of previous NOP receptor agonist/antagonist studies.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel di- or trisubstituted isatin derivatives were designed and synthesized in 5-6 steps in 25-45% overall yields. Their structures were confirmed by 1H NMR and 13C NMR as well as LC-MS. The anticancer activity of the fouty-three new isatin derivatives against human T lymphocyte cells Jurkat was evaluated by MTT assay in vitro. SAR study suggested that the combination of 1-benzyl and 5-[trans-2-(methoxycarbonyl)ethen-1-yl] substitution greatly enhanced their cytotoxic activity. Among them, compound 2h was shown to have a significant cytotoxic activity with an IC50 value of 0.03 μM, more than 330-fold higher than that of it’s mother molecule isatin. Investigation of the cell morphology changes and annexin-V/PI staining study demonstrated that compound 2h inhibited the proliferation of Jurkat cells by inducing apoptosis. Sicne compound 2h induced the dissipation of mitochondrial membrane potential and the activation of caspase-3, it was obvious that compound 2h inhibited the proliferation of Jurkat cells through the mitochondrial apoptotic pathway. Other than this, compound 2h exerted inhibition effect to many other tumor cells and only showed weak cytotoxic to human normal cells suggesting that compound 2h possessed a broad range of anticancer spectrum and high safety to normal cells.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of D-ring fused 1,2,3-thiadiazole DHEA derivatives were synthesized and investigated for their activity against the growth of various tumor cell lines using the sulforhodamine B (SRB) assay. It is amazing that for these compounds, T47D cell line was much more sensitive than other tumor cell lines. The most potent saturated N-heterocyclic derivatives showed similar antitumor effect with the positive control compound ADM (adriamycin) on T47D cells, that was 44-60 folds more potent than the lead compound DHEA. Most compounds with potent antitumor activity displayed low toxicity on normal human fibroblasts (HAF). Especially compound 25 (CH33) showed an IC50 of 0.058 μM on T47D cells and its selectivity index (SI) between HAF and T47D was 364, which was 214 folds better than ADM (SI = 1.7). The apoptosis, colony formation and transwell migration assays of 25 were performed on T47D cell line. The primary mechanism study showed that 25 caused a dose-dependent induction of apoptosis, and induced phosphorylation of EphA2 and EphB3 in T47D cells. The in vivo antitumor effect of 25 was also observed in T47D tumor-bearing mice without obvious toxicity.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel arylpiperazine 5-(4-fluorophenyl)-5-methylhydantoins with 2-hydroxypropyl linker (2-15) was synthesized and evaluated on their affinity towards serotonin 5-HT7 receptor (5-HT7R) in comparison to other closely related GPCRs: serotonin 5-HT1A, and dopamine D2 receptors. The functional activity studied through the measurement of 5-HT7R-mediated cyclic AMP production in Human Embryonic Kidney 293 cells (HEK293) stably expressing human 5-HT7 proved their antagonistic properties. The lead structure was also examined in the preliminary metabolic stability study using human liver microsomes (HMLs). The process of selection of candidates for synthesis was supported by a special molecular modeling workflow including combinatorial library generation, docking, and machine learning-based assessment. Additionally, in silico predictions of selectivity over 5-HT1AR and D2R, as well as functional activity were carried out. The newly synthesized compounds were proved to possess a potent affinity for 5-HT7R, similar to that of the lead structure of5-(4-fluorophenyl)-3-(3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-5-methylimidazolidine-2,4-dione (1). For several derivatives, significant selectivity both over 5-HT1AR and D2R was found.
    No preview · Article · Feb 2016 · European Journal of Medicinal Chemistry