Acta Pharmacologica Sinica (ACTA PHARMACOL SIN)

Publisher: Zhongguo yao li xue hui; Shanghai yao wu yan jiu suo; Zhongguo ke xue yuan, Nature Publishing Group

Journal description

Acta Pharmacologica Sinica, published monthly, is the official journal of the Chinese Pharmacological Society and Shanghai Institute of Materia Medica, Chinese Academy of Sciences. APS was registered as an English international journal in 2000. APS has gained a well-earned reputation during the last two decades for its persisting in reporting researches of high scientific quality.The APS welcomes current original researches on all aspects of life sciences, both experimental and clinical, from any part of the world. Reviews based primarily on authors' own research of internationally important topics are especially welcome.

Current impact factor: 2.91

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.912
2013 Impact Factor 2.496
2012 Impact Factor 2.354
2011 Impact Factor 1.953
2010 Impact Factor 1.909
2009 Impact Factor 1.783
2008 Impact Factor 1.676
2007 Impact Factor 1.677
2006 Impact Factor 1.397
2005 Impact Factor 1.123
2004 Impact Factor 1.125
2003 Impact Factor 0.884
2002 Impact Factor 0.688
2001 Impact Factor 0.631
1996 Impact Factor 0.197

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.83
Cited half-life 6.90
Immediacy index 0.37
Eigenfactor 0.01
Article influence 0.67
Website Acta Pharmacologica Sinica website
Other titles Acta pharmacologica Sinica (Online), APS, Acta pharmacologica Sinica, Zhongguo yao li xue bao
ISSN 1671-4083
OCLC 51169124
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Nature Publishing Group

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 6 months embargo
  • Conditions
    • Authors retain copyright
    • Published source must be acknowledged and DOI cited
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • On author's personal website and institutional repository
    • If funding agency rules apply, authors may post authors version to their relevant funding body's archive, 6 months after publication
    • This policy is an exception to the default policies of 'Nature Publishing Group'
  • Classification
    yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer's disease (AD)-like symptoms. Methods: SD rats were administered IMM-H004 (8 mg·kg(-1)·d(-1), ig) or donepezil (positive control, 1 mg·kg(-1)·d(-1), ig) for 25 days. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis. Results: OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil. Conclusion: Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. Methods: Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. Results: Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). Conclusion: MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: CYP2J3 in myocardium metabolizes arachidonic acid to 4 regioisomeric epoxyeicosatrienoic acids (EETs), which have diverse biological activities in rat heart. In this study we examined whether CYP2J3 was involved in cardioprotective effects of ophiopogonin D (OPD), a steroidal glycoside isolated from Chinese herb Radix ophiopogonis. Methods: Rat cardiomyoblast cell line (H9c2 cells) was tested. Intracellular Ca(2+) concentrations ([Ca(2+)]i) were measured using Fluo-4/AM. The expression of calcium-regulating molecules and ER stress signaling molecules was measured with qRT-PCR and Western blot analyses. Cell apoptosis was quantified with Hochest 33258 staining and TUNEL assay. The levels of 14,15-DHET, a stable metabolite of 14,15-EET, was assessed with ELISA. Results: Angiotensin II (10(-6) mol/L) significantly decreased the expression of calcium-regulating molecules (SERCA2a, PLB, RyR2 and FKBP12.6), and elevated [Ca(2+)]i in H9c2 cells. Furthermore, angiotensin II markedly increased the expression of ER stress signaling molecules (GRP78, CHOP, p-JNK and cleaved caspase-12) and ER stress-mediated apoptosis. OPD (100, 250 and 500 nmol/L) dose-dependently increased CYP2J3 expression and 14,15-DHET levels in normal H9c2 cells. Pretreatment of H9c2 cells with OPD suppressed angiotensin II-induced abnormalities in Ca(2+) homeostasis, ER stress responses and apoptosis. Overexpression of CYP2J3 or addition of exogenous 14,15-EET also prevented angiotensin II-induced abnormalities in Ca(2+) homeostasis, whereas transfection with CYP2J3 siRNA diminished the effects of OPD on Ca(2+) homeostasis. Furthermore, the intracellular Ca(2+) chelator BAPTA suppressed angiotensin II-induced ER stress responses and apoptosis in H9c2 cells. Conclusion: OPD is a novel CYP2J3 inducer that may offer a therapeutic benefit in treatment of cardiovascular diseases related to disturbance of Ca(2+) homeostasis and ER stress.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic XueBiJing injection. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. Methods: Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Additional rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. Results: A total of 18 monoterpene glycosides were detected in XueBiJing injection (content level, 0.001-2.47 mmol/L); the dose level of paeoniflorin was 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure, with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was poor due to the poor membrane permeability. Conclusion: Active paeoniflorin is a promising XueBiJing ingredient of therapeutic importance due to its significant systemic exposure and appropriate pharmacokinetic profile after dosing.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Caveolin-1 (cav-1) is a major multifunctional scaf¬folding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a "cocktail" of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered.
    No preview · Article · Feb 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca 2+ overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca 2+ -permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large conductance, Ca2+-activated potassium (BK) channels play important roles in the regulation of neuronal excitability and the control of smooth muscle contractions. BK channels can be activated by changes in both the membrane potential and intracellular Ca2+ concentrations. Here, we provide an overview of the structural and pharmacological properties of BK channel blockers. First, the properties of different venom peptide toxins from scorpions and snakes are described, with a focus on their characteristic structural motifs, including their disulfide bond formation pattern, the binding interface between the toxin and BK channel, and the functional consequence of the blockage of BK channels by these toxins. Then, some representative non-peptide blockers of BK channels are also described, including their molecular formula and pharmacological effects on BK channels. The detailed categorization and descriptions of these BK channel blockers will provide mechanistic insights into the blockade of BK channels. The structures of peptide toxins and non-peptide compounds could provide templates for the design of new channel blockers, and facilitate the optimization of lead compounds for further therapeutic applications in neurological disorders or cardiovascular diseases.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: APS (Acta Pharmacologica Sinica), the top pharmacology research journal based in China, publishes original articles and reviews on all aspects of pharmacology and the related life sciences
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:hERG potassium channels display miscellaneous interactions with diverse chemical scaffolds. In this study we assessed the hERG inhibition in a large compound library of diverse chemical entities and provided data for better understanding of the mechanisms underlying promiscuity of hERG inhibition.Methods:Approximately 300 000 compounds contained in Molecular Library Small Molecular Repository (MLSMR) library were tested. Compound profiling was conducted on hERG-CHO cells using the automated patch-clamp platform-IonWorks Quattro ™.Results:The compound library was tested at 1 and 10 μmol/L. IC 50 values were predicted using a modified 4-parameter logistic model. Inhibitor hits were binned into three groups based on their potency: high (IC 50 <1 μmol/L), intermediate (1 μmol/L< IC 50 <10 μmol/L), and low (IC 50 >10 μmol/L) with hit rates of 1.64%, 9.17% and 16.63%, respectively. Six physiochemical properties of each compound were acquired and calculated using ACD software to evaluate the correlation between hERG inhibition and the properties: hERG inhibition was positively correlative to the physiochemical properties ALogP, molecular weight and RTB, and negatively correlative to TPSA.Conclusion:Based on a large diverse compound collection, this study provides experimental evidence to understand the promiscuity of hERG inhibition. This study further demonstrates that hERG liability compounds tend to be more hydrophobic, high-molecular, flexible and polarizable.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:KCNQ1 and KCNE1 form a complex in human ventricular cardiomyocytes, which are important in maintaining a normal heart rhythm. In the present study we investigated the effects of a homologous series of 1-alkanols on KCNQ1/KCNE1 channels expressed in Xenopus oocytes.Methods:ECG recording was made in rats injected with ethanol-containing solution (0.3 mL, IP). Human KCNQ1 channel and its auxiliary subunit KCNE1 were heterologously coexpressed in Xenopus oocytes, which were superfused with ND96 solution; 1-alkanols (ethanol, 1-butanol and 1-hexanol) were delivered through a gravity-driven perfusion device. The slow-delayed rectifier potassium currents I Ks (KCNQ1/KCNE1 currents) were recorded using a two-electrode voltage clamp method. Site-directed mutations (I257A) were made in KCNQ1.Results:In ECG recordings, a low concentration of ethanol (3%, v/v) slightly increased the heart rate of rats, whereas the higher concentrations of ethanol (10%, 50%, v/v) markedly reduced it. In oocytes coexpressing KCNQ1/KCNE1 channels, ethanol, 1-butanol and 1-hexanol dose-dependently inhibited I Ks currents with IC 50 values of 80, 11 and 2.7 mmol/L, respectively. Furthermore, the 1-alkanols blocked the KCNQ1 channel in both open and closed states, and a four-state model could adequately explain the effects of 1-alkanols on the closed-state channel block. Moreover, the mutation of I257A at the intracellular loop between S4 and S5 in KCNQ1 greatly decreased the sensitivity to 1-alkanols; and the IC 50 values of ethanol, 1-butanol and 1-hexanol were increased to 634, 414 and 7.4 mmol/L, respectively. The mutation also caused the ablation of closed-state channel block.Conclusion:These findings provide new insight into the intricate mechanisms of the blocking effects of ethanol on the KCNQ1 channel.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators.Methods:KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique.Results:From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively.Conclusion:The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:ATP-sensitive potassium (K ATP) channels formed by a combination of SUR/Kir6.x subunits play a crucial role in protection against hypoxic or ischemic injuries resulting from cell metabolic disorders. In this study we investigated the effects of Na-azide, a metabolic inhibitor, on K ATP channels expressed in Xenopus oocytes, and explored the structure basis for their sensitivity to cell metabolic disorders.Methods:Six subtypes of K ATP channels (wild SUR1/Kir6.2, SUR2B/Kir6.2, SUR1/Kir6.1, SUR2B/Kir6.1, SUR2A/Kir6.2 and SUR2A/Kir6.1), as well as eleven subtypes of K ATP channels with mutant subunits were expressed in Xenopus oocytes. K ATP currents were recorded using a two-electrode voltage clamp recording technique. The drugs were applied through bath.Results:Except SUR2A/Kir6.1, five subtypes of K ATP channels were activated by Na-azide (3 mmol/L) with an order of the responses: SUR1/Kir6.2>SUR2B/Kir6.2>SUR1/Kir6.1>SUR2B/Kir6.1>SUR2A/Kir6.2, and the opening rate (t 1/2) was SUR1/Kir6.x>SUR2B/Kir6.x>SUR2A/Kir6.2. Furthermore, Kir6.2, rather than Kir6.1, had intrinsic sensitivity to Na-azide, and the residues involved in ATP-binding (R50 and K185) or pH-sensing (H175) were associated with the sensitivity of the Kir6.2 subunit to Na-azide. Moreover, the residues (K707 and K1348) within the Walker A (WA) motifs of two nucleotide-binding domains (NBDs) were essential for SUR2B/Kir6.x (especially SUR2B/Kir6.1) channel activation by Na-azide, suggesting a key role for Mg-adenine nucleotide binding and/or hydrolysis in the SUR2B subunit.Conclusion:Among the six subtypes of K ATP channels, SUR1/Kir6.2 is the most sensitive, whereas SUR2A/Kir6.1 is insensitive, to cell metabolic disorders. The Kir6.2 subunit, rather than the Kir6.1 subunit, has intrinsic sensitivity to cell metabolic disorders. The residues (K707 and K1348) within the WA motifs of SUR2B are important for the sensitivity of SUR2B/Kir6.x channels to cell metabolic disorders.
    Preview · Article · Jan 2016 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca(2+) transient. Results: A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca(2+) transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. Conclusion: These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure.
    No preview · Article · Nov 2015 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: We have reported novel anticancer bioactive peptides (ACBPs) that show tumor-suppressive activities in human gastric cancer, leukemia, nasopharyngeal cancer, and gallbladder cancer. In this study, we investigated the effects of ACBPs on human colorectal cancer and the underlying mechanisms. Methods: Cell growth and apoptosis of human colorectal tumor cell line HCT116 were measured using cell proliferation assay and flow cytometry, respectively. The expression levels of PARP, p53 and Mcl1A were assessed with Western blotting and immunohistochemistry. For evaluation of the in vivo antitumor activity of ACBPs, HCT116 xenograft nude mice were treated with ACBPs (35 μg/mL, ip) for 10 days. Results: Treatment of HCT116 cells with ACBPs (35 μg/mL) for 4-6 days significantly inhibited the cell growth. Furthermore, treatment of HCT116 cells with ACBPs (35 μg/mL) for 6-12 h significantly enhanced UV-induced apoptosis, increased the expression of PARP and p53, and decreased the expression of Mcl-1. Administration of ACBPs did not change the body weight of HCT116 xenograft nude mice, but decreased the tumor growth by approximately 43%, and increased the expression of PARP and p53, and decreased the expression of Mcl-1 in xenograft mouse tumor tissues. Conclusion: Administration of ACBPs inhibits human colorectal tumor cell growth and induces apoptosis in vitro and in vivo through modulating the PARP-p53-Mcl-1 signaling pathway.
    No preview · Article · Nov 2015 · Acta Pharmacologica Sinica