European Journal of Nuclear Medicine (Eur J Nucl Med Mol Imag)

Publisher: European Association of Nuclear Medicine, Springer Verlag

Journal description

The European Journal of Nuclear Medicine and Molecular Imaging is a forum for the exchange of clinical and scientific information for the nuclear medicine community and allied professions involved in the functional, metabolic and molecular investigation of disease. The journal will is primary interest to those practising in the field of nuclear medicine but also reports on original works relating to physics, dosimetry, radiation biology, computer science, radiochemistry and pharmacy. The journal welcomes original material reflecting the growing field of molecular imaging probes, reporter gene assays, cell trafficking, targeting of endogenous gene expression and antisense methodologies. The journal publishes in-depth Reviews of topical interest, Occasional Surveys, Short Communications and correspondence. A section on Controversies is also a new. Case reports are not published. Official Journal of the European Association of Nuclear Medicine (EANM).

Current impact factor: 5.38

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 5.383

Additional details

5-year impact 5.09
Cited half-life 6.10
Immediacy index 1.43
Eigenfactor 0.03
Article influence 1.54
Website European Journal of Nuclear Medicine and Molecular Imaging website
Other titles European journal of nuclear medicine and molecular imaging (Online), European journal of nuclear medicine
ISSN 1619-7089
OCLC 51876601
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • No preview · Article · Feb 2016 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. Methods: This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). Results: In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. Conclusions: FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.
    No preview · Article · Feb 2016 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To determine if (11)C-L-methionine PET is a useful tool in the evaluation of the long-term effect of proton beam treatment in patients with meningioma remnant. Methods: Included in the study were 19 patients (4 men, 15 women) with intracranial meningioma remnants who received hypofractionated high-energy proton beam treatment. Patients were examined with (11)C-L-methionine PET and MRI prior to treatment and after 6 months, and 1, 2, 3, 5, 7 and 10 years. Temporal changes in methionine uptake ratio, meningioma volume, meningioma regrowth and clinical symptoms throughout the follow-up period were evaluated. Results: In 17 patients the tumour volume was unchanged throughout the follow-up. The methionine uptake ratio on PET decreased over the years in most patients. In two patients the tumour remnant showed progression on MRI. In these patients, prior to the volume increase on MRI, the methionine uptake ratio increased. One patient experienced transient clinical symptoms and showed radiological evidence of a radiation-induced reaction close to the irradiated field. Conclusion: Proton beam treatment is a safe and effective treatment for achieving long-term growth arrest in meningioma remnants. Follow-up with (11)C-L-methionine PET may be a valuable adjunct to, but not a replacement for, standard radiological follow-up.
    No preview · Article · Jan 2016 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early assessment of response to neoadjuvant chemotherapy (NAC) might be helpful in avoiding the toxicity of ineffective chemotherapy and allowing refinement of treatment. We conducted a review of the literature regarding the applicability of (18)F-FDG PET/CT to the prediction of an early pathological response in different subgroups of breast cancer. Clinical research in this field has intensified in the last few years. Early studies by various groups have shown the potential of (18)F-FDG PET/CT in the early assessment of response to NAC. However, interim PET/CT in breast cancer has not yet gained wide acceptance compared to its use in other settings such as lymphomas. This is in part due to a lack of consensus that early evaluation of response can be used to direct change in therapy in the neoadjuvant breast cancer setting, and only limited data showing that response-adaptive therapy leads to improved outcomes. However, one major element that has hampered the use of (18)F-FDG PET/CT in directing neoadjuvant therapy is its evaluation in populations with mixed subtypes of breast cancer. However, major improvements have occurred in recent years. Pilot studies have highlighted the need for considering breast cancer subtype and the type of treatment, and have offered criteria for the use of PET/CT for the early prediction of response in specific settings. (18)F-FDG PET/CT has considerable potential for the early prediction of pathological complete response to NAC in aggressive subtypes such as triple-negative or HER2-positive breast cancers. The results of a multicentre trial that used early metabolic response on (18)F-FDG PET/CT as a means to select poor responders to adapt neoadjuvant treatment have recently been published. Other trials are ongoing or being planned.
    No preview · Article · Jan 2016 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using (124)I as tracer. Methods: The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT2) followed by PET/MRI of the neck 24 h after (124)I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT2 acquisition time (2 min, PET/MRI2) and the other covering the whole MRI scan time (30 min, PET/MRI30). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. Results: PET/MRI2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI30 tended to detect more PET-positive metastases than PET/MRI2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. Conclusions: PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant. Volume information provided by MRI for some iodine-positive lesions might be useful in dosimetry.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Radioembolization of liver cancer with (90)Y-loaded microspheres is increasingly used but data regarding hospital staff exposure are scarce. We evaluated the radiation exposure of medical staff while preparing and injecting (90)Y-loaded glass and resin microspheres especially in view of the increasing use of these products. Methods: Exposure of the chest and finger of the radiopharmacist, nuclear medicine physician and interventional radiologist during preparation and injection of 78 glass microsphere preparations and 16 resin microsphere preparations was monitored. Electronic dosimeters were used to measure chest exposure and ring dosimeters were used to measure finger exposure. Results: Chest exposure was very low for both products used (<10 μSv from preparation and injection). In our experience, finger exposure was significantly lower than the annual limit of 500 mSv for both products. With glass microspheres, the mean finger exposure was 13.7 ± 5.2 μSv/GBq for the radiopharmacist, and initially 17.9 ± 5.4 μSv/GBq for the nuclear medicine physician reducing to 13.97 ± 7.9 μSv/GBq with increasing experience. With resin microspheres, finger exposure was more significant: mean finger exposure for the radiopharmacist was 295.1 ± 271.9 μSv/GBq but with a reduction with increasing experience to 97.5 ± 35.2 μSv/GBq for the six most recent dose preparations. For administration of resin microspheres, the greatest mean finger exposure for the nuclear medicine physician (the most exposed operator) was 235.5 ± 156 μSv/GBq. Conclusion: Medical staff performing (90)Y-loaded microsphere radioembolization procedures are exposed to safe levels of radiation. Exposure is lower than that from treatments using (131)I-lipiodol. The lowest finger exposure is from glass microspheres. With resin microspheres finger exposure is acceptable but could be optimized in accordance with the ALARA principle, and especially in view of the increasing use of radioembolization.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine

  • No preview · Article · Dec 2015 · European Journal of Nuclear Medicine

  • No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI. Methods: Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year. Eighty-three patients with a comprehensive 1-year follow-up were included. LV dyssynchrony was assessed by the standard deviation (SD) of the LV phase histogram using radionuclide angiography. Remodelling was defined as a 20 % increase in LV end-systolic volume index (LVESVI) at 1 year. Results: At baseline, LVEF, wall motion score index, and perfusion defect size were significantly impaired in the 43 patients (52 %) with LV remodelling (all p < 0.001), without significant increase in LV mechanical dyssynchrony. During follow-up, there was a progressive increase in LV SD (p = 0.01). Baseline independent predictors of LV remodelling were perfusion SPECT defect size (p = 0.001), LVEF (p = 0.01) and a history of hypertension (p = 0.043). Bone marrow cell therapy did not affect the time-course of LV remodelling and dyssynchrony. Conclusions: LV remodelling 1 year after reperfused MI is associated with progressive LV dyssynchrony and is related to baseline infarct size and ejection fraction, without impact of cell therapy on this process.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Current guidelines for glioma imaging by positron emission tomography (PET) using the amino acid analogue O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET) recommend image acquisition from 20-40 min post injection (p.i.). The maximal tumour-to-background evaluation (TBRmax) obtained in these summation images does not enable reliable differentiation between low and high grade glioma (LGG and HGG), which, however, can be achieved by dynamic (18)F-FET-PET. We investigated the accuracy of tumour grading using TBRmax values at different earlier time points after tracer injection. Methods: Three hundred and fourteen patients with histologically proven primary diagnosis of glioma (131 LGG, 183 HGG) who had undergone 40-min dynamic (18)F-FET-PET scans were retrospectively evaluated. TBRmax was assessed in the standard 20-40 min summation images, as well as in summation images from 0-10 min, 5-15 min, 5-20 min, and 15-30 min p.i., and kinetic analysis was performed. TBRmax values and kinetic analysis were correlated with histological classification. ROC analyses were performed for each time frame and sensitivity, specificity, and accuracy were assessed. Results: TBRmax values in the earlier summation images were significantly better for tumour grading (P < 0.001) when compared to standard 20-40 min scans, with best results for the early 5-15 min scan. This was due to higher TBRmax in the HGG (3.9 vs. 3.3; p < 0.001), while TBRmax remained nearly stable in the LGG (2.2 vs. 2.1). Overall, accuracy increased from 70 % in the 20-40 min analysis to 77 % in the 5-15 min images, but did not reach the accuracy of dynamic analysis (80 %). Conclusions: Early TBRmax assessment (5-15 min p.i.) is more accurate for the differentiation between LGG and HGG than the standard static scan (20-40 min p.i.) mainly caused by the characteristic high (18)F-FET uptake of HGG in the initial phase. Therefore, when dynamic (18)F-FET-PET cannot be performed, early TBRmax assessment can be considered as an alternative for tumour grading.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The primary purpose of this retrospective study was to evaluate the differences of bone tracer uptake (BTU) in symptomatic and asymptomatic knees after bilateral total knee arthroplasty (TKA) and identify typical BTU patterns with regards to TKA component position and alignment. Methods A consecutive number of 37 patients after bilateral TKA were retrospectively included. The knees were grouped into symptomatic (group A) and asymptomatic (group B) knees. All patients underwent 99m-Tc-HDP-SPECT/CT. Coronal, rotational, and sagittal TKA component position was analysed in 3D reconstructed CT. BTU was anatomically localised and quantified using a validated standardized localization scheme. Maximum BTU values for each area were recorded and normalized values calculated. Signed log-rank test, chi-square test, paired t-tests, and Pearson correlations were used (p <0.05). Results Symptomatic TKAs were significantly more flexed and had a tendency to be more internally rotated when compared to asymptomatic ones (p < 0.05). In all regions, the mean BTU in asymptomatic knees was lower than in symptomatic knees. In both groups the highest mean BTU was found around the tibial stem (symptomatic 7.30; asymptomatic 6.30, p = 0.061) and at the tip of the tibial stem (symptomatic 5.49; asymptomatic 4.74, p = 0.062). Superior patellar regions showed higher BTU than inferior regions. The highest patellar BTU was found in the superior medial patella (symptomatic 4.99; asymptomatic 3.98, p = 0.048). The lowest BTU was found in the posterior femoral regions (flatsp, flatip, fmedsp, fmedip) (Table 3). Tibial and patellar areas showed twice as high mean BTUs than femoral areas (Fig. 3). A significant correlation of TKA component position and BTU was demonstrated. Conclusions Distribution and intensity of BTU in SPECT/CT depends on TKA component position and alignment. In addition, typical BTU patterns in symptomatic and asymptomatic knees were identified. A profound knowledge of BTU pattern, TKA component position, and alignment helps to identify pathologies in patients after TKA. Clinical evidence Diagnostic study, level II
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Positron emission tomography (PET) using O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) is a well-established method for the diagnostics of brain tumors. This study investigates reproducibility of (18)F-FET uptake kinetics in rat gliomas and the influence of the frequently used dexamethasone (Dex) therapy. Methods: F98 glioma or 9L gliosarcoma cells were implanted into the striatum of 31 Fischer rats. After 10-11 days of tumor growth, the animals underwent dynamic PET after injection of (18)F-FET (baseline). Thereafter, animals were divided into a control group and a group receiving Dex injections, and all animals were reinvestigated 2 days later. Tumor-to-brain ratios (TBR) of (18)F-FET uptake (18-61 min p.i.) and the slope of the time-activity-curves (TAC) (18-61 min p.i.) were evaluated using a Volume-of-Interest (VOI) analysis. Data were analyzed by two-way repeated measures ANOVA and reproducibility by the intraclass correlation coefficient (ICC). Results: The slope of the tumor TACs showed high reproducibility with an ICC of 0.93. A systematic increase of the TBR in the repeated scans was noted (3.7 ± 2.8 %; p < 0.01), and appeared to be related to tumor growth as indicated by a significant correlation of TBR and tumor volume (r = 0.77; p < 0.0001). After correction for tumor growth TBR showed high longitudinal stability with an ICC of 0.84. Dex treatment induced a significant decrease of the TBR (-8.2 ± 6.1 %; p < 0.03), but did not influence the slope of the tumor TAC. Conclusion: TBR of (18)F-FET uptake and tracer kinetics in brain tumors showed high longitudinal stability. Dex therapy may induce a minor decrease of the TBR; this needs further investigation.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Twelve years ago a meta-analysis evaluated the diagnostic performance of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging; however, there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of (18)F-FDG PET/CT and determine if there is added value when compared to PET. Methods: A systematic review of English articles was conducted, and MEDLINE PubMed, the Cochrane Library, and Embase were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of (18)F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Results: Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60 %) malignant tumors and 306 benign lesions. The (18)F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for diagnosing MsSTL were 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94), and 0.91 (0.83, 0.99), respectively. The posterior mean (95 % highest posterior density interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy, and positive predictive value when compared to a dedicated PET (0.85, 0.89, and 0.91 vs 0.71, 0.85, and 0.82, respectively). Conclusion: (18)F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate and specific and has a higher positive predictive value than PET.
    No preview · Article · Dec 2015 · European Journal of Nuclear Medicine