Plant signaling & behavior (Plant Signal Behav)

Publisher: Taylor & Francis

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
ISSN 1559-2324

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification
    green

Publications in this journal

  • Sousuke Imamura · Yasuko Kawase · Ikki Kobayashi · Mie Shimojima · Hiroyuki Ohta · Kan Tanaka
    [Show abstract] [Hide abstract]
    ABSTRACT: Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • Kiminori Toyooka · Mayuko Sato · Mayumi Wakazaki · Ken Matsuoka
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a wide-range and high-resolution transmission electron microscope acquisition system and obtained giga-pixel images of tobacco BY-2 cells during the log and stationary phases of cell growth. We demonstrated that the distribution and ultrastructure of compartments involved in membrane traffic (i.e., Golgi apparatus, multivesicular body, and vesicle cluster) change during the log-to-stationary transition. Mitochondria, peroxisomes, and plastids were also enumerated. Electron densities of mitochondria and peroxisomes were altered during the growth-phase shift, while their numbers were reduced by nearly half. Plastid structure dramatically changed from atypical to spherical with starch granules. Nearly the same number of plastids was observed in both log and stationary phases. These results indicate that mechanisms regulating organelle populations differ from organelle to organelle.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • Feng-Ping Zhang · Jia-Lin Huang · Shi-Bao Zhang
    [Show abstract] [Hide abstract]
    ABSTRACT: The well-known orchid genus Paphiopedilum has attracted much attention from biologists because of its diverse floral traits. Although these traits have been thoroughly described, little is known about their evolutionary trajectory. In this study, we explored their evolutionary patterns and trajectory through phylogenetic analyses and close observations, and 10 characters in 21 Chinese species mapped onto an existing phylogenetic tree. Lip shape, staminode shape, petal shape, and petal width are relatively congruent with molecular phylogenies, thereby validating the existing traditional classification system. All four of those characters, along with flower number, are strongly conserved, and are significantly affected by phylogeny. By contrast, flower color (including that of the dorsal sepal, lip, and petal) is significantly convergent among those examined species and less affected by phylogeny. Therefore, this character is independent of evolution and mainly influenced by environmental factors. All of these characters are key, classical indicators when distinguishing among species within the subgenera Brachypetalum and Paphiopedilum.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant hormone abscisic acid (ABA), a key regulator in many crucial developmental and physiological processes, recruits diverse components into precisely regulated signaling network. We recently discovered that MAPKKK18, an ABA-activated kinase, is regulated by the protein phosphatase type 2C (PP2C) ABI1 and the kinase SnRK2.6, both components of the ABA core signaling pathway. ABI1 acts to inhibit MAPKKK18 kinase activity, but also affects MAPKKK18 protein turnover via the ubiquitin-proteasome pathway. SnRK2.6 kinase also seems to be important for the regulation of MAPKKK18 function. In this review we summarize the mechanisms that are exclusively involved in MAPKKK18 kinase regulation and that ensure specificity in its activation.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Local burning is known to generate and propagate variation potential (VP) in plants. VP affects different physiological processes, including reducing heat-related damage to photosystem I (PSI). We investigated mechanisms of the process. Photosynthesis parameters were measured with Dual-PAM-100 and GFS-3000. VP was induced by burning the first mature leaf and then waiting 5, 10, 15, or 20 min to initiate heating of the second mature leaf. Photosystems activities in the second leaf were investigated at 15 and 135 min after heating. In the absence of VP induction, when incubation in hot water (5 min) was used for heating the intact second leaf, PSI and PSII activities decreased after incubation at both exposure temperatures (45°C and 50°C). When local burning of the first leaf induced VP propagation into the second leaf, reduced photosynthesis (PSI) was observed. Arrival of VP in the second leaf prior to hot water incubation at 50°C decreased heating-induced suppression of PSI activity when measured 15 and 135 min later. Dependence of PSI activity on the time interval (5, 10, 15, or 20 min) between VP induction and heating of the second leaf was dissimilar at 15 and 135 min. Heat-induced suppression of PSII activity in the second leaf was stimulated after VP induction. In contrast, the effect of VP on PSI and PSII damage was weak when leaf two was heated at 45°C. VP-induced decrease of PSI activity suppression at 15 min after heating was correlated with stimulation of PSII activity suppression, but increase of PSI activity at 135 min after heating was not related to PSII activity. Thus, our results suggest the possibility of two different pathways of VP-induced decrease of heat-related PSI damage.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: The holoparasitic angiosperm Cuscuta develops haustoria that enable it to feed on other plants. Recent findings corroborate the long-standing theory that cell wall modifications are required in order for the parasite to successfully infect a host, and further suggest that changes to xyloglucan through the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) are essential. On the other hand, XTH expression was also detected in resistant tomato upon an attack by Cuscuta, which suggests that both host and parasite use these enzymes in their "arms race". Here, we summarize existing data on the cell wall-modifying activities of XTHs during parasitization and present a model suggesting how XTHs might function to make the host's resources accessible to Cuscuta.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-like kinases (RLKs) play key roles in disease resistance, in particular basal immunity. They recognize patterns produced by the pathogen invasion and often work as complexes in the plasma membrane. Among these RLKs, there is increasing evidence in several plant species of the key role of Wall-associated kinases (WAKs) in disease resistance. We recently showed using rice (Oryza sativa) loss-of-function mutants of three transcriptionaly co-regulated OsWAK genes that individual OsWAKs are positively required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. This finding was unexpected since WAK genes belong to large gene families where functional redundancy is expected. Here we provide evidence that this may be due to complex physical interaction between OsWAK proteins.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks adjust an organism's environmentally relevant physiological responses.. In plants, a decentralized circadian clock system has recently been proposed. Epidermal clock function is crucial for cell elongation; thus, epidermis-specific overexpression of CCA1 caused smaller cotyledons and longer hypocotyls under 27°C, concomitant with elevated night time levels of PIF4 mRNA. However, which tissue's clock regulates PIF4 expression is still an open question. Here we tested spatial expression patterns of PIF4 and its downstream target IAA29 with or without epidermal clock perturbation. Using an epidermal-specific expression system, we revealed that epidermal clock perturbation increases PIF4 expression in both epidermis and mesophyll. However, IAA29 expression is mainly regulated in the epidermis, implying the potential importance of epidermis for regulation of cell elongation through PIF4 and IAA29. We conclude that the circadian clock in epidermis regulates cell elongation mainly in epidermis, and there is also another inter-tissue signaling pathway from epidermis to mesophyll.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seminal root growth is one of the factors to determine rice seedling establishment. Our previous reports showed light can induce Z-type wavy root and coiling root morphology in several rice (Oryza sativa L.) varieties, and the regulated Z-type and unregulated coil seminal roots were resulted by different circumnutational trajectories. Moreover, the light-induced seminal root waving was conducted by an NO-dependent signaling pathway. In order to further reveal the difference of root tip movement between straight and wavy seminal roots; here, the root tip movement trajectories of Tainung 67 variety (TNG67; presented straight root in light conditions) and Taichung Native 1 (TCN1; presented Z-type wavy root in light) were recorded and analyzed in both white light and dark (dim far-red light was applied in dark for taking time-lapse photography) conditions. The results showed the root tip movement of both rice varieties in low intensity of dim far-red light conditions were followed the circumnutation path. However, the stimuli of high intensity of white light would increase the root helix angle in TCN1 seedlings but not in TNG67. In addition, slowing down the rate of root helix was induced by white light treatment in TCN1 but not in TNG67 seedlings. In conclusion, changes of TCN1 rice seminal root morphology from straight to wavy type stimulated by light was resulted by both helix angle increasing and circumnutation rate slowing of root tip movement.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the CesA complex and microtubules, and that we named COMPANIONS OF CELLULOSE SYNTHASE (CC). The CC proteins protect the cellulose synthesizing capacity of Arabidopsis seedlings during exposure to adverse environmental conditions by enhancing microtubule dynamics. In this paper we provide cell biology and genetic evidence that the CSI1 and the CC proteins fulfil distinct functions during cellulose synthesis. We also show that the CC proteins are necessary to aid cellulose synthesis when components of the CesA complex are impaired. These data indicate that the CC proteins have a broad role in aiding cellulose synthesis during environmental changes and when core complex components are non-functional.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low temperature (LT) severely affects rice growth and grain yield. Recently, we reported contrasting genotypes including ARR 09 and Takyer for seedling stage long duration low temperature response. Here we show that susceptible rice genotypes show an increase in lipid peroxide levels and decrease in relative water content (RWC) to a higher extent in comparison to tolerant genotypes in response to 3 h LT. Stress induced NAC family members (OsNAC1, OsNAC2, OsNAC3, and OsNAC5) showed a higher transcript accumulation in tolerant genotypes than in sensitive genotypes after LT treatment suggesting stress tolerance might be due to higher expression of stress-responsive transcription factors. Furthermore, ARR 09 can be used as an important genetic resource to better understand LT tolerance mechanism.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Jasmonates (JAs) are a class of plant hormones, essential in plant development and defense. JA induces the interaction of the JA receptor Coronatine Insensitive 1 with jasmonate ZIM-domain (JAZ) proteins, and promotes subsequent JAZs degradation, leading to the release of downstream factors and activation of diverse plant development and defense processes. We recently revealed that the IIIe bHLH transcription factors MYC2, MYC3, MYC4 and MYC5 interact with the MYB transcription factors MYB21 and MYB24 to form the bHLH-MYB complex, and JAZs repress the bHLH-MYB complex to regulate JA-mediated stamen development. Here, we further discuss the different properties of the components of the bHLH-MYB complex in expression pattern and stamen regulation.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of fourteen citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, forty-six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to three main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified virulence-related effectors of a hemibiotrophic fungal pathogen Colletotrichum orbiculare, and found that a novel interface was generated by a biotrophic interaction between C. orbiculare and the host cucumber, in which the effectors secreted from the pathogen accumulated preferentially. The interface was located around the biotrophic primary hyphal neck. Here, we showed that C. orbiculare also developed this interface in a biotrophic interaction with melon, which belongs to Cucurbitaceae. Furthermore, C. orbiculare developed interface in the interaction with a susceptible plant, Nicotiana benthamiana, which is distantly related to Cucurbitaceae, suggesting that the spatial regulation strategy for effectors in C. orbiculare is not specific to cucumber; rather, it is conserved among the various plants that are susceptible to this pathogen.
    No preview · Article · Feb 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defence enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed.
    No preview · Article · Jan 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: In bacteria a second messenger, guanosine 5′-diphosphate 3′-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ˜10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.
    No preview · Article · Jan 2016 · Plant signaling & behavior

  • No preview · Article · Jan 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling mediated by reactive oxygen species (ROS) has emerged as a key component of plants' responses to environmental stress. The ROS-regulated transcription factor ZAT12 was revealed as a negative regulator of iron (Fe) deficiency responses through its direct interaction with the bHLH protein FIT. In the epidermis of the early root differentiation zone, ZAT12 stability depended on the presence of the ZAT12 EAR motif. It was concluded that ZAT12 may be the target of two alternative degradation pathways. Here, we present a model aiming to explain the regulatory mechanisms by which ZAT12 could be targeted for degradation and to predict the types of potential regulators involved. In addition to an E3 ubiquitin ligase, we predict two critical regulatory factors, namely a protein interacting with the ZAT12 EAR motif and a ROS-responsive regulatory protein.
    No preview · Article · Jan 2016 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salt stress is an important environmental condition limiting the agricultural production. The reprogram of protein expression is one of the strategies of plants to cope with salt stress. We have previously analyzed the photosynthesis, antioxidant and oxidative phosphorylation involved in the carbon metabolism and the redox metabolism in rice seedlings under salt stress. Here, we focused on the proteins involved in nitrogen metabolic response. As it was reported that the nitrite uptake was enhanced in Arabidopsis PII knock-out mutants, the down-regulation of P-II nitrogen sensing protein in rice probably contributes to the accumulation of amino acids under stress. In addition, the protein synthesis is limited by the decrease of related proteins, and more amino acids could be used as the compatible solute. Hence, our study indicates that the rearrangement of nitrogen metabolism under salt stress could accumulate more amino acids as the compatible solute rather than the components of proteins. This study provides information for an improved understanding of nitrogen metabolic response to salt stress in rice.
    No preview · Article · Jan 2016 · Plant signaling & behavior