Cell cycle (Georgetown, Tex.) (CELL CYCLE)

Publisher: Taylor & Francis

Journal description

Cell Cycle is not just about cell division. We cover topics from man to virus, from DNA to RNA, from ageing to development, from cell senescence to stem cells, from adhesion to autophagy, from cancer to immunity, from neurobiology to molecular therapeutics, from theoretical biology to therapy.

Current impact factor: 4.57

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.565
2013 Impact Factor 5.006
2012 Impact Factor 5.243
2011 Impact Factor 5.359
2010 Impact Factor 4.999
2009 Impact Factor 4.087
2008 Impact Factor 4.12
2006 Impact Factor 3.214

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.64
Cited half-life 5.10
Immediacy index 0.91
Eigenfactor 0.06
Article influence 1.58
Website Cell Cycle website
Other titles Cell cycle (Georgetown, Tex.: Online)
ISSN 1538-4101
OCLC 60638946
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability when combined with PI3K/mTOR and RAF/MEK/ERK pathway inhibitors, but only in Hep3B cells, and significantly inhibited tumor growth in nude mice bearing xenografts of Hep3B cells. Therefore, we demonstrated for the first time that VO-OHpic inhibited cell growth and induced senescence in HCC cells with low PTEN expression, and that the combination of VO-OHpic with PI3K/mTOR and RAF/MEK/ERK inhibitors resulted in a more effective tumor cell kill. Our findings, hence, provide proof-of-principle evidence that pharmacological inhibition of PTEN may represent a promising approach for HCC therapy in a subclass of patients with a low PTEN expression.
    No preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin (cis-diaminedichloroplatin (II), CDDP) is part of the standard therapy for a number of solid tumors including Non-Small-Cell Lung Cancer (NSCLC). The initial response observed is in most cases only transient and tumors quickly become refractory to the drug. Tumor cell resistance to CDDP relies on multiple mechanisms, some of which still remain unknown. In search for such mechanisms, we examined the impact of CDDP on mRNA translation in a sensitive and in a matched resistant NSCLC cell line. We identified a set of genes whose mRNAs are differentially translated in CDDP resistant vs. sensitive cells. The translation of the mRNA encoding the Ubiquitin-Specific Peptidase 1 (USP1), a Ubiquitin peptidase with important function in multiple DNA repair pathways, is inhibited by CDDP exposure in the sensitive cells, but not in the resistant cells. This lack of down-regulation of USP1 expression at the translational level plays a primary role in CDDP resistance since inhibition of USP1 expression or activity by siRNA or the small molecule inhibitor ML323, respectively is sufficient to re-sensitize resistant cells to CDDP. We involved the USP1 mRNA translation as a major mechanism of CDDP resistance in NSCLC cells and suggest that USP1 could be evaluated as a candidate predictive marker and as a therapeutic target to overcome CDDP resistance. More generally, our results indicate that analysis of gene expression at the level of mRNA translation is a useful approach to identify new determinants of CDDP resistance.
    No preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)

  • No preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)
  • Source

    Preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)
  • Source

    Preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)

  • No preview · Article · Jan 2016 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: An adequate supply of nucleotides is essential for accurate DNA replication, and inappropriate deoxyribonucleotide triphosphate (dNTP) concentrations can lead to replication stress, a common source of DNA damage, genomic instability and tumourigenesis. Here, we provide evidence that Erk5 is necessary for correct nucleotide supply during erythroid development. Mice with Erk5 knockout in the haematopoietic lineage showed impaired erythroid development in bone marrow, accompanied by altered dNTP levels and increased DNA mutagenesis in erythroid progenitors as detected by exome sequencing. Moreover, Erk5-depleted leukemic Jurkat cells presented a marked sensitivity to thymidine-induced S phase stalling, as evidenced by increased H2AX phosphorylation and apoptosis. The increase in thymidine sensitivity correlated with a higher dTTP/dCTP ratio. These results indicate that Erk5 is necessary to maintain the balance of nucleotide levels, thus preventing dNTP misincorporation and DNA damage in proliferative erythroid progenitors and leukemic Jurkat T cells.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)

  • No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by three methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • Source

    Preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localised enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilised an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol(-/-)) on the downstream maintenance of cells after UV damage. We report that PrimPol(-/-) cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol(-/-) arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol(-/-) cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat stress is one of the best-studied exogenous stress factors; however little is known about its delayed effects. Recently, we have shown that heat stress induces cellular senescence-like G2 arrest exclusively in early S-phase cells. The mechanism of this arrest includes the generation of heat stress-induced single-stranded DNA breaks, the collision of replication forks with these breaks and the formation of difficult-to-repair double-stranded DNA breaks. However, the early S phase-specific effects of heat stress are not limited to the induction of single-stranded DNA breaks. Here, we report that HS induces partial DNA re-replication and centrosome amplification. We suggest that HS-induced alterations in the expression levels of the genes encoding the replication licensing factors are the primary source of such perturbations. Notably, these processes do not contribute to acquisition of a senescence-like phenotype, although they do elicit postponed effects. Specifically, we found that the HeLa cells can escape from the heat stress-induced cellular senescence-like G2 arrest, and the mitosis they enter is multipolar due to the amplified centrosomes.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2Wt protein, or a mutant form (DDB2Mut) unable to interact with PCNA. We report that overexpression of the DDB2Mut protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21CDKN1A protein level, and a shorter cell cycle length, has been observed in the DDB2Mut cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.
    No preview · Article · Dec 2015 · Cell cycle (Georgetown, Tex.)