Technology in cancer research & treatment (TECHNOL CANCER RES T)

Publisher: Adenine Press

Journal description

Technology in Cancer Research and Treatment welcomes manuscripts from active investigators involved in technologies devoted to early diagnosis, treatment, and palliation of cancer. The Journal will include both experimental and theoretical investigations. Among the topics that will be covered are MRI, including functional MRI, spiral CT, PET, optical spectroscopy, computer-aided reconstruction of tumors, computer-aided drug design, stereotactic radiosurgery, cryosurgery, brachytherapy, electroporation, photodynamic therapy, gene therapy, cancer vaccine, proteomics, and genomics, as they impact cancer research and treatment. Special emphasis will be given to non-invasive techniques. The Journal publishes original articles, express communications, opinion pieces, and timely reviews.

Current impact factor: 1.73

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.73
2013 Impact Factor 1.886
2012 Impact Factor 1.943
2011 Impact Factor 1.692
2010 Impact Factor 1.814
2009 Impact Factor 2.023
2008 Impact Factor 1.951
2007 Impact Factor 2.362
2006 Impact Factor 2.366
2005 Impact Factor 1.677

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.91
Cited half-life 7.00
Immediacy index 0.59
Eigenfactor 0.00
Article influence 0.55
Website Technology in Cancer Research and Treatment website
Other titles Technology in cancer research & treatment (Print), Technology in cancer research & treatment, Technology in cancer research and treatment
ISSN 1533-0346
OCLC 45625094
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Adenine Press

  • Pre-print
    • Archiving status unclear
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Applies to NIH, HHMI and Wellcome Trust authors only
    • On PubMed Central
    • Applies to JBSD journal
    • All titles now published elsewhere [10 April 2015]
  • Classification
    white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme, the most common and aggressive form of primary brain tumor, presents a dismal prognosis. MicroRNAs play a critical role in the initiation, progression, and metastasis of cancer; however, the potential biological role of miRNAs in glioblastoma multiforme remains largely unknown. In our study, we found that microRNA-96 is upregulated in glioma tissues than in normal human brains. Transfection of microRNA-96 mimics into glioma cells significantly decreases apoptosis by suppressing PDCD4, a well-known tumor suppressor that is involved in apoptosis. In contrast, knockdown of microRNA-96 enhanced apoptosis. In vivo, microRNA-96 overexpression inhibits the apoptosis and increases tumor growth. These data suggest that microRNA-96 is a potential molecular target for glioma treatment.
    No preview · Article · Feb 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: To determine whether individualized radiation dose escalation after planned chemoradiation based on the decrease in tumor and normal tissue constraints can improve survival in patients with esophageal carcinoma. Methods: From August 2005 to December 2010, 112 patients with squamous esophageal carcinoma were treated with radical concurrent chemoradiation. Patients received positron emission tomography-computer tomography scan twice, before radiation and after radiation dose of 50.4 Gy. All patients were noncomplete metabolic response groups according to the Response Evaluation Criteria in solid tumors. Only 52 patients with noncomplete metabolic response received individualized dose escalation based on tumor and normal tissue constraints. Survival and treatment failure were observed and analyzed using SPSS (13.0). Results: The rate of complete metabolic response for patients with noncomplete metabolic response after dose escalation reached 17.3% (9 of 52). The 2-year overall survival rates for patients with noncomplete metabolic response in the conventional and dose-escalation groups were 20.5% and 42.8%, respectively(P = .001). The 2-year local control rates for patients were 35.7% and 76.2%, respectively (P = .002). When patients were classified into partial metabolic response and no metabolic response, 2-year overall survival rates for patients with partial metabolic response were significantly different in conventional and dose-escalation groups (33.8% vs 78.4%; P = .000). The 2-year overall survival rates for patients with no metabolic response in two groups (8.6% vs 15.1%) did not significantly differ (P = .917). Conclusion: Individualized radiation dose escalation has the potential to improve survival in patients with esophageal carcinoma according to increased rate of complete metabolic response. However, further trials are needed to confirm this and to identify patients who may benefit from dose escalation.
    No preview · Article · Feb 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To present our experiences in understanding and minimizing bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a clinical cone beam computed tomography system. Methods: Bowtie-filter position and profile variations during gantry rotation were studied. Two previously proposed strategies (A and B) were applied to the clinical cone beam computed tomography system to correct bowtie-filter crescent artifacts. Physical calibration and analytical approaches were used to minimize the norm phantom misalignment and to correct for bowtie-filter normalization artifacts. A combined procedure to reduce bowtie-filter crescent artifacts and bowtie-filter normalization artifacts was proposed and tested on a norm phantom, CatPhan, and a patient and evaluated using standard deviation of Hounsfield unit along a sampling line. Results: The bowtie-filter exhibited not only a translational shift but also an amplitude variation in its projection profile during gantry rotation. Strategy B was better than strategy A slightly in minimizing bowtie-filter crescent artifacts, possibly because it corrected the amplitude variation, suggesting that the amplitude variation plays a role in bowtie-filter crescent artifacts. The physical calibration largely reduced the misalignment-induced bowtie-filter normalization artifacts, and the analytical approach further reduced bowtie-filter normalization artifacts. The combined procedure minimized both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts, with Hounsfield unit standard deviation being 63.2, 45.0, 35.0, and 18.8 Hounsfield unit for the best correction approaches of none, bowtie-filter crescent artifacts, bowtie-filter normalization artifacts, and bowtie-filter normalization artifacts + bowtie-filter crescent artifacts, respectively. The combined procedure also demonstrated reduction of bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a CatPhan and a patient. Conclusion: We have developed a step-by-step procedure that can be directly used in clinical cone beam computed tomography systems to minimize both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts.
    No preview · Article · Feb 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: A specific protein profile that accompanies neoplastic transformation in the premalignant airway epithelium could provide an opportunity for early diagnosis of lung cancer. The aim of this study was to screen and identify early candidate biomarkers of non–small cell lung cancer. Thirteen non–small cell lung cancer samples were obtained within 30 minutes after a surgical resection. Laser capture microdissection was performed to enrich the normal lung cell and squamous metaplasia or atypical adenomatous hyperplasia cell populations. The resulting tandem mass spectrum was automatically searched for proteins against International Protein Index (IPI) human protein database using the TurboSEQUEST searching engine. The molecular function and biological processes of identified proteins were determined based on universal bioinformatics tools. The 2 proteins of interest, focal adhesion kinase and C-terminal Src kinase, were validated using Western blot method. A total of 863 proteins were identified by automatically searching the tandem mass spectrum, among which 427 were dysregulated expression in premalignant airway epithelium compared with those of normal lung cells. The 427 proteins were mainly distributed in 24 sorts of cellular components, 22 molecular function, 15 biological processes, and 10 significant perturbations of pathways. The most significant network included 48 genes and was related to energy production, cell cytoskeleton, cell adhesion, metabolism, oxidative stress, and small molecule biochemistry. Focal adhesion kinase and C-terminal Src kinase were significantly overexpressed in premalignant lung lesion cells compared with the normal lung cells in 13 cases. We identified that there were 427 proteins involved in non–small cell lung cancer carcinogenic process and confirmed the key biological pathways in premalignant lung tissue. The significantly upregulated focal adhesion kinase and C-terminal Src kinase could be considered as molecular biomarkers for early diagnosis and prognosis of non–small cell lung cancer.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made “gantry” and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose/objectives: Patients receiving stereotactic body radiotherapy for stage I non-small cell lung cancer are typically staged clinically with positron emission tomography-computed tomography. Currently, limited data exist for the detection of occult hilar/peribronchial (N1) disease. We hypothesize that positron emission tomography-computed tomography underestimates spread of cancer to N1 lymph nodes and that future stereotactic body radiotherapy patients may benefit from increased pathologic evaluation of N1 nodal stations in addition to N2 nodes. Materials/methods: A retrospective study was performed of all patients with clinical stage I (T1-2aN0) non-small cell lung cancer (American Joint Committee on Cancer, 7th edition) by positron emission tomography-computed tomography at our institution from 2003 to 2011, with subsequent surgical resection and lymph node staging. Findings on positron emission tomography-computed tomography were compared to pathologic nodal involvement to determine the negative predictive value of positron emission tomography-computed tomography for the detection of N1 nodal disease. An analysis was conducted to identify predictors of occult spread. Results: A total of 105 patients with clinical stage I non-small cell lung cancer were included in this study, of which 8 (7.6%) patients were found to have occult N1 metastasis on pathologic review yielding a negative predictive value for N1 disease of 92.4%. No patients had occult mediastinal nodes. The negative predictive value for positron emission tomography-computed tomography in patients with clinical stage T1 versus T2 tumors was 72 (96%) of 75 versus 25 (83%) of 30, respectively (P = .03), and for peripheral versus central tumor location was 77 (98%) of 78 versus 20 (74%) of 27, respectively (P = .0001). The negative predictive values for peripheral T1 and T2 tumors were 98% and 100%, respectively; while for central T1 and T2 tumors, the rates were 85% and 64%, respectively. Occult lymph node involvement was not associated with primary tumor maximum standard uptake value, histology, grade, or interval between positron emission tomography-computed tomography and surgery. Conclusion: Our results support pathologic assessment of N1 lymph nodes in patients with stage Inon-small cell lung cancer considered for stereotactic body radiotherapy, with the greatest benefit in patients with central and T2 tumors. Diagnostic evaluation with endoscopic bronchial ultrasound should be considered in the evaluation of stereotactic body radiotherapy candidates.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and objective: The association between angiotensin-converting enzyme insertion/deletion gene polymorphism and lung cancer susceptibility is still being debated. This meta-analysis was performed to evaluate the relationship between angiotensin-converting enzyme insertion/deletion gene polymorphism and lung cancer risk. Method: Association studies were identified from the databases of PubMed and China Biological Medicine Database disc as of June 1, 2015, and eligible investigations were synthesized using meta-analysis method. Results: Ten investigations were identified for the analysis of association between angiotensin-converting enzyme insertion/deletion gene polymorphism and lung cancer risk. There was no a marked association between D allele/DD genotype and lung cancer susceptibility, and II genotype did not play a protective role against lung cancer risk in the overall population (D: odds ratio = 1.05, 95% confidence interval: 0.88-1.26, P = .58; DD: odds ratio = 1.18, 95% confidence interval: 0.82-1.69, P = .38; II: odds ratio = 0.99, 95% confidence interval: 0.77-1.27, P = .93). Furthermore, angiotensin-converting enzyme insertion/deletion gene polymorphism was not associated with lung cancer susceptibility in Asian population and in Caucasians. Conclusion: Angiotensin-converting enzyme insertion/deletion gene polymorphism was not associated with lung cancer susceptibility. However, more investigations are required to further clarify the association.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Material and methods: Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Results: Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Conclusion: Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Norcantharidin, a low-toxic analog of the active anticancer compound cantharidin in Mylabris, can inhibit proliferation and induce apoptosis of multiple types of cancer cells. However, the anticancer activities of norcantharidin with respect to neuroblastoma, and its underlying mechanisms, have not been investigated. Therefore, our study was designed to determine the efficacy of norcantharidin on SK-N-SH neuroblastoma cell death and to elucidate detailed mechanisms of activity. In the present study, norcantharidin suppressed the proliferation and cloning ability of SK-N-SH cells in a dose-dependent manner, apparently by reducing the mitochondrial membrane potential and arresting SK-N-SH cells at the G2/M stage, accompanied by elevated expressions of p21 and decreased expressions of cyclin B1 and cell division control 2. Treatment by norcantharidin induced significant mitophagy and autophagy, as demonstrated by a decrease in Translocase Of Outer Mitochondrial Membrane 20 (TOM20), increased beclin1 and LC3-II protein expression, reduced protein SQSTM1/p62 expression, and accumulation of punctate LC3 in the cytoplasm of SK-N-SH cells. In addition, norcantharidin induced apoptosis through regulating the expression of B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 and B-cell lymphoma 2-associated X protein/myeloid cell leukemia 1 and activating caspase-3 and caspase-9-dependent endogenous mitochondrial pathways. We also observed an increase in phosphor-AMP-activated protein kinase accompanied with a decrease in phosphor-protein kinase B and mammalian target of rapamycin expression after treatment with norcantharidin. Subsequent studies indicated that norcantharidin participates in cellular autophagy and apoptosis via activation of the c-Jun NH2-terminal kinases/c-Jun pathway. In conclusion, our results demonstrate that norcantharidin can reduce the mitochondrial membrane potential, induce mitophagy, and subsequently arouse cellular autophagy and apoptosis; the AMP-activated protein kinase, protein kinase B/mammalian target of rapamycin, and c-Jun NH2-terminal kinases/c-Jun signaling pathways are widely involved in these processes. Thus, the traditional Chinese medicine norcantharidin could be a novel therapeutic strategy for treating neuroblastoma.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are highly conserved noncoding RNA that negatively modulate protein expression at a posttranscriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. To date, the potential microRNAs regulating the growth and progression of osteosarcoma are not fully identified yet. Previous reports have shown differentially expressed miR-125b in osteosarcoma. However, the role of miR-125b in human osteosarcoma has not been totally illuminated. In this study, we have shown that miR-125b was downregulated in human osteosarcoma tissues compared to the adjacent tissues and effects as a tumor suppressor in vitro. We found that stable overexpression of miR-125b in osteosarcoma cell lines U2OS and MG-63 inhibited cell proliferation, migration, and invasion. Our data also verified that Bcl-2 is the target of miR-125b. Meanwhile, we showed that Bcl-2 was inversely correlated with miR-125b in osteosarcoma tissues. More importantly, we proved that miR-125b increased the chemosensitivity of osteosarcoma cell lines to cisplatin by targeting Bcl-2. In conclusion, our data demonstrate that miR-125b is a tumor suppressor and support its potential application for the treatment of osteosarcoma in the future.
    No preview · Article · Jan 2016 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To explore the expressions of annexin A2 in bladder cancer cell lines and bladder cancer tissues, we want to find the relationship among annexin A2, drug resistance, and recurrence of bladder cancer.
    No preview · Article · Dec 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Published reports on the relationship between GSTM1 gene polymorphisms and prostate cancer risk are heterogeneous in their conclusions, and the significance of these polymorphisms is still debated. This meta-analysis was performed to attempt to combine comparable studies, thereby increasing sample size and statistical significance in order to obtain a better evaluation of the association between GSTM1 polymorphisms and prostate cancer risk. The association investigations were identified from PubMed, Cochrane Library, and China Biological Medicine Database on March 1, 2014. Forty-three reports were recruited into this meta-analysis that contained date from 6741 patients and 9053 controls. There was a marked association between the GSTM1 null genotype and prostate cancer risk in the overall population (odds ratio = 1.39, 95% confidence interval: 1.21-1.60, P < .00001), caucasians (odds ratio = 1.48, 95% confidence interval: 1.23-1.79, P < .0001) and Asians (odds ratio = 1.62, 95% confidence interval: 1.16-2.27, P = .005). However, the GSTM1 null genotype was not associated with prostate cancer risk in Africans (odds ratio = 0.77, 95% confidence interval: 0.53-1.13, P = 0.19) and African Americans (odds ratio = 1.00, 95% confidence interval: 0.69-1.45, P = 0.99). In conclusion, GSTM1 null genotype was a risk factor to predict the prostate cancer risk in the overall population, Caucasians, and Asians. Although compelling, limitations inherent to meta-analysis, study design of the individual studies, and most importantly, possible gene-gene and gene-environment interactions, as well as the potential involvement of glutathione S-transferases in multiple cellular processes make drawing definite conclusions difficult.
    No preview · Article · Nov 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To evaluate a method for reducing metal artifacts, arising from dental fillings, on cone-beam computed tomography images. Materials and methods: A projection interpolation algorithm is applied to cone-beam computed tomography images containing metal artifacts from dental fillings. This technique involves identifying metal regions in individual cone-beam computed tomography projections and interpolating the surrounding values to remove the metal from the projection data. Axial cone-beam computed tomography images are then reconstructed, resulting in a reduction in the streak artifacts produced by the metal. Both phantom and patient imaging data are used to evaluate this technique. Results: The interpolation substitution technique successfully reduced metal artifacts in all cases. Corrected images had fewer or no streak artifacts compared to their noncorrected counterparts. Quantitatively, regions of interest containing the artifacts showed reduced variance in the corrected images versus the uncorrected images. Average pixel values in regions of interest around the metal object were also closer in value to nonmetal regions after artifact reduction. Artifact correction tended to perform better on patient images with less complex metal objects versus those with multiple large dental fillings. Conclusion: The interpolation substitution is potentially an efficient and effective technique for reducing metal artifacts caused by dental fillings on cone-beam computed tomography image. This technique may be effective in reducing such artifacts in patients with head and neck cancer receiving daily image-guided radiotherapy.
    No preview · Article · Nov 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have reported about the application of volumetric-modulated arc radiotherapy in the treatment of multiple brain metastases. One of the key concerns for these radiosurgical treatments lies in the integral dose within the normal brain tissue, as it has been shown to increase with increasing number of brain tumors treated. In this study, we investigate the potential to improve normal brain tissue sparing specific to volumetric-modulated arc radiotherapy by increasing the number of isocenters and arc beams. Adopting a multi-institutional benchmark study protocol of planning multiple brain metastases via a radiosurgical apparatus, a flattening filter-free TrueBeam RapidArc delivery system (Varian Oncology, Palo Alto, California) was used for a volumetric-modulated arc radiotherapy treatment planning study, where treatment plans for target combinations of N = 1, 3, 6, 9, and 12 targets were developed with increasing numbers of isocenters and arc beams. The treatment plans for each target combination were compared dosimetrically among each other and against the reference Gamma Knife treatment plan from the original benchmark study. We observed that as the number of isocenters or arc beams increased, the normal brain isodose volumes such as 12- to 4-Gy on average decreased by up to 15% for all the studied cases. However, when the best volumetric-modulated arc radiotherapy normal brain isodose volumes were compared against the corresponding reference Gamma Knife values, volumetric-modulated arc radiotherapy remained 100% to 200% higher than those of Gamma Knife for all target combinations. The study results, particularly for the solitary (N = 1) metastases case, directly challenged the general notion of dose equivalence among current radiosurgical modalities. In conclusion, multiple isocenter and multiple arc beam delivery solutions are capable of decreasing normal brain irradiation exposure for volumetric-modulated arc radiotherapy. However, there is further technological development in need for volumetric-modulated arc radiotherapy before similar dosimetric treatment plans could be achievable when compared to Gamma Knife radiosurgery.
    No preview · Article · Nov 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simulations of clinical proton radiotherapy treatment plans using general purpose Monte Carlo codes have been proven to be a valuable tool for basic research and clinical studies. They have been used to benchmark dose calculation methods, to study radiobiological effects, and to develop new technologies such as in vivo range verification methods. Advancements in the availability of computational power have made it feasible to perform such simulations on large sets of patient data, resulting in a need for automated and consistent simulations. A framework called MCAUTO was developed for this purpose. Both passive scattering and pencil beam scanning delivery are supported. The code handles the data exchange between the treatment planning system and the Monte Carlo system, which requires not only transfer of plan and imaging information but also translation of institutional procedures, such as output factor definitions. Simulations are performed on a high-performance computing infrastructure. The simulation methods were designed to use the full capabilities of Monte Carlo physics models, while also ensuring consistency in the approximations that are common to both pencil beam and Monte Carlo dose calculations. Although some methods need to be tailored to institutional planning systems and procedures, the described procedures show a general road map that can be easily translated to other systems.
    No preview · Article · Nov 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: This study aimed to detect the sensitivity of Delt 4 on ordinary field multileaf collimator misalignments, system misalignments, random misalignments, and misalignments caused by gravity of the multileaf collimator in stereotactic body radiation therapy. Methods: (1) Two field sizes, including 2.00 cm (X) × 6.00 cm (Y) and 7.00 cm (X) × 6.00 cm (Y), were set. The leaves of X1 and X2 in the multileaf collimator were simultaneously opened. (2) Three cases of stereotactic body radiation therapy of spinal tumor were used. The dose of the planning target volume was 1800 cGy with 3 fractions. The 4 types to be simulated included (1) the leaves of X1 and X2 in the multileaf collimator were simultaneously opened, (2) only X1 of the multileaf collimator and the unilateral leaf were opened, (3) the leaves of X1 and X2 in the multileaf collimator were randomly opened, and (4) gravity effect was simulated. The leaves of X1 and X2 in the multileaf collimator shifted to the same direction. The difference between the corresponding 3-dimensional dose distribution measured by Delt 4 and the dose distribution in the original plan made in the treatment planning system was analyzed with γ index criteria of 3.0 mm/3.0%, 2.5 mm/2.5%, 2.0 mm/2.0%, 2.5 mm/1.5%, and 1.0 mm/1.0%. Results: (1) In the field size of 2.00 cm (X) × 6.00 cm (Y), the γ pass rate of the original was 100% with 2.5 mm/2.5% as the statistical standard. The pass rate decreased to 95.9% and 89.4% when the X1 and X2 directions of the multileaf collimator were opened within 0.3 and 0.5 mm, respectively. In the field size of 7.00 (X) cm × 6.00 (Y) cm with 1.5 mm/1.5% as the statistical standard, the pass rate of the original was 96.5%. After X1 and X2 of the multileaf collimator were opened within 0.3 mm, the pass rate decreased to lower than 95%. The pass rate was higher than 90% within the 3 mm opening. (2) For spinal tumor, the change in the planning target volume V18 under various modes calculated using treatment planning system was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. Conclusions: Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord.
    No preview · Article · Nov 2015 · Technology in cancer research & treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporins are a family of integral membrane proteins that are expressed in all living organisms and play vital roles in transcellular and transepithelial water movement. Cell viability and motility are critical for progression of cancer. Cell survival requires the suitable concentration of water and solutes. The balance is largely maintained by aquaporins whose major function is the transport of water and small solutes across the plasma membrane. The important role of aquaporins has received more and more attention in the recent years. A number of recent studies have revealed that aquaporins may be involved in cell migration and angiogenesis. This review will highlight the expression of aquaporins in different malignant neoplasms. Remarkably, we will summarize the influence of drugs on aquaporins, not only the traditional Chinese medicine but also the Western medicine. Therapeutic targeting of aquaporins may thus be advantageous for blocking the mechanism common for a number of key cancer phenotypes.
    No preview · Article · Oct 2015 · Technology in cancer research & treatment