genesis (Genesis)

Publisher: Wiley

Journal description

We have crossed the threshold into a new age of research in developmental biology. As the international genome project enters its climatic phase, new research generates an unprecedented amount of information on the sequence and identification of genes and their structure. We soon anticipate the existence of a 'book of life': a comprehensive catalogue of all known genes together with their nucleotide sequence. This new dawn calls for a pioneering new journal offering new approaches and perspectives for understanding the function of genes and the roles they play in complex biological processes, both individually and in combination at the molecular, cellular, organismal and population level. On January 1, 2000, we became the editors of the journal Developmental Genetics, published by Wiley (New York). The focus of the journal is on the genetics of development and fundamental embryological research resulting from studies in animals and plants. We publish pioneering articles offering new perspectives on all model genetic systems to understand the function of genes, alone and in combination, acknowledging the multigenic character of complex biological processes. Contributions using non-traditional animal and plant systems are encouraged to emphasize the journal's interest in comparative studies. Special attention is also given to technology-oriented reports. We invite you to contribute to genesis. We welcome submissions in the form of letters, articles, correspondence, and technology updates, which advance knowledge across a range of dynamic areas on the cutting edge of developmental biology, including mutagenesis; embryogenesis; histeogenesis; morphogenesis; organogenesis.

Current impact factor: 2.02

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.018
2013 Impact Factor 2.042
2012 Impact Factor 2.584
2011 Impact Factor 2.527
2010 Impact Factor 2.395
2009 Impact Factor 2.223
2008 Impact Factor 2.217

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.41
Cited half-life 8.80
Immediacy index 0.45
Eigenfactor 0.01
Article influence 1.18
Website Genesis website
Other titles Genesis (New York, N.Y.: 2000: Online), Genesis
ISSN 1526-968X
OCLC 42463257
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Wiley

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • Non-Commercial
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: C. elegans has recently emerged as a valuable model to understand the link between nuclear organization and cell fate, by combining microscopy approaches, genome-wide mapping techniques with advanced genetics. Crucial to these analyses are techniques to determine the genome-wide interaction pattern of proteins with DNA. Chromatin immunoprecipitation has proven valuable but it requires considerable amounts of starting material. This is sometimes difficult to achieve, in particular for specific genotypes (balanced strains, different sexes, severe phenotypes…). As an alternative to ChIP, DNA adenine methyltransferase identification by sequencing (DamID-seq) was recently shown to be able to characterize binding sites in single mammalian cells. Additionally, DamID can be achieved for cell-type specific analysis by expressing Dam fusion proteins under tissue specific promoters in a controlled manner. In this report, we present a user-friendly pipeline to analyse DamID-seq data in C. elegans. Based upon this pipeline, we provide a comparative analysis of libraries generated with different starting material and discuss important library features. Moreover, we introduce an adaptation of an imaging based tool to visualize in vivo the cell-specific tridimensional binding pattern of any protein of interest. This article is protected by copyright. All rights reserved.
    No preview · Article · Feb 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Longitudinal analyses are crucial for understanding long-term processes such as development and behavioral rhythms. For a complete understanding of such processes, both organism-level observations as well as single-cell observations are necessary. Sleep is an example for a long-term process that is under developmental control. This behavioral state is induced by conserved sleep-active neurons, but little is known about how sleep neurons control the physiology of an animal systemically. In the nematode C. elegans, sleep induction crucially requires the single RIS interneuron to actively induce a developmentally regulated sleep behavior. Here, we used RIS-induced sleep as an example of how longitudinal analyses can be automated. We developed methods to analyze both behavior and neural activity in larva across the sleep-wake cycle. To image behavior, we used an improved DIC contrast to extract the head and detect the nose. To image neural activity, we used GCaMP3 expression in a small number of neurons including RIS combined with a neuron discrimination algorithm. Thus, we present a comprehensive platform for automatically analyzing behavior and neural activity in C. elegans exemplified by using RIS-induced sleep during C. elegans development. This article is protected by copyright. All rights reserved.
    No preview · Article · Feb 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent technological innovations including bacterial artificial chromosome-based translating ribosome affinity purification (BAC-TRAP) have greatly facilitated analysis of cell type-specific gene expression in vivo, especially in the nervous system. To better study endothelial gene expression in vivo, we have generated a BAC-TRAP transgenic mouse line where the L10a ribosomal subunit is tagged with EGFP and placed under the control of the endothelium-specific Tie2 (Tek) promoter. We show that transgene expression in this line is widely, but specifically, detected in endothelial cells in several brain regions throughout pre- and postnatal development, as well as in other organs. We also show that this line results in highly significant enrichment of endothelium-specific mRNAs from brain tissues at different stages. This BAC-TRAP line therefore provides a useful genetic tool for in vivo endothelial gene profiling under various developmental, physiological, and pathological conditions. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of non-centrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rbm47 encodes a RNA binding protein that is necessary for Cytidine to Uridine RNA editing. Rbm47(gt/gt) mutant mice that harbour inactivated Rbm47 display poor viability. Here we determined that the loss of Rbm47(gt/gt) offspring is due to embryonic lethality at mid-gestation. We further showed that growth of the surviving Rbm47(gt/gt) mutants is impaired. In view of that Rbm47 is expressed in both the visceral endoderm and the definitive endoderm, we exploited the utility of the switchable FlEx gene-trap cassette and the activity of Cre and FLP recombinases to generate mice that conditionally inactivate and restore Rbm47 function in tissue-specific manner and demonstrated that Rbm47 function is required in the embryo proper, and not the visceral endoderm, for viability and growth. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of a multicellular organism from a single zygote depends on the differentiation of progenitor cells to specialized cell types. The differentiation of these cell types is associated with changes in gene expression and the underlying chromatin landscape. To understand how these processes are regulated, it is desirable to understand how the chromatin features that constitute the epigenome differ between cell types at any given time during development. INTACT, a method for the cell type-specific purification of nuclei that can be used for the isolation of both RNA and chromatin, has emerged as a powerful tool to simultaneously study gene expression and chromatin profiles specifically in cell types of interest. In this review, we focus on the application of INTACT to different model organisms and discuss its potential for profiling cell types in their developmental context. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The developing mouse retina is a tractable model for studying neurogenesis and differentiation. Although transgenic Cre mouse lines exist to mediate conditional genetic manipulations in developing mouse retinas, none of them act specifically in early developing rods. For conditional genetic manipulations of developing retinas, we created a Nrl-Cre mouse line in which the Nrl promoter drives expression of Cre in rod precursors. Our results show that Nrl-Cre expression is specific to the retina where it drives rod-specific recombination with a temporal pattern similar to endogenous Nrl expression during retinal development. This Nrl-Cre transgene does not negatively impact retinal structure and function. Taken together, our data suggest that the Nrl-Cre mouse line is a valuable tool to drive Cre-mediated recombination specifically in developing rods. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deletions, duplications and inversions of large genomic regions covering several genes are an important class of disease causing variants in humans. Modelling these structural variants in mice requires multi-step processes in ES cells, which has limited their availability. Mutant mice containing small insertions, deletions and single nucleotide polymorphisms can be reliably generated using CRISPR/Cas9 directly in mouse zygotes. Large structural variants can be generated using CRISPR/Cas9 in ES cells, but it has not been possible to generate these directly in zygotes. We now demonstrate the direct generation of deletions, duplications and inversions of up to one million base pairs by zygote injection. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock-in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge. Here we report the generation of knock-in mice with successful targeted insertion of large donor DNA elements ranged from 3.0 to 7.1 kb at the ROSA26 locus using the CRISPR/Cas system. Multiple independent knock-in founder mice were obtained by injection of hCas9 mRNA/sgRNA/donor vector mixtures into the cytoplasm of C57BL/6N zygotes when the injected zygotes were treated with an inhibitor of actin polymerization, cytochalasin. Successful germ line transmission of three of these knock-in alleles was also confirmed. Our results suggest that treatment of zygotes with actin polymerization inhibitors following microinjection can be a viable method to facilitate targeted insertion of large DNA elements by the CRISPR/Cas system, enabling targeted knock-in readily attainable in zygotes. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among transgenic mice with ubiquitous Cre recombinase activity, all strains to date excise loxP-flanked (floxed) alleles, either at or before the zygote stage or at nondescript stages of development. This manuscript describes a new mouse strain, in which Cre recombinase, integrated into the Esrrb locus, efficiently excises floxed alleles in pre-implantation embryos at the onset of the four-cell stage. By enabling inactivation of genes only after the embryo has undergone two cleavages, this strain should facilitate in vivo studies of genes with essential gametic or zygotic functions. In addition, this study describes a new, highly pluripotent hybrid C57BL/6J x 129S1/SvImJ mouse embryonic stem cell line, HYB12, in which this knock-in and additional targeted alleles have been generated. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss-of-function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic crossover between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele-specific single-nucleotide polymorphisms. We demonstrated the utility of the Fgf3(Δ) -Fgf4(flox) -cis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3(Δ) -Fgf4(flox) -cis line will be useful to study of redundancy of these genes in a variety of tissues and stages in development. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatio-temporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx-based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene-trap mutagenesis. The SAGFLEx gene trap cassette comprises the rabbit β-globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site-specific recombinases Cre and Flp. Insertion of the gene-trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene-trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial- and temporal-controlled manner. This article is protected by copyright. All rights reserved.
    No preview · Article · Nov 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non-neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR-Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR-Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR-Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR-Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR-Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR. This article is protected by copyright. All rights reserved.
    No preview · Article · Nov 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube defects in Nodal signaling mutants were caused by defects in mesendodermal/mesodermal tissue. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation. This article is protected by copyright. All rights reserved.
    No preview · Article · Nov 2015 · genesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Misexpression Suppressor of Ras 4 (MESR4), a plant homeodomain (PHD) finger protein with nine zinc-finger motifs has been implicated in various biological processes including the regulation of fat storage and innate immunity in Drosophila. However, the role of MESR4 in the context of development remains unclear. Here we show that MESR4 is a nuclear protein essential for embryonic development. Immunostaining of polytene chromosomes using anti-MESR4 antibody revealed that MESR4 binds to numerous bands along the chromosome arms. The most intense signal was detected at the 39E-F region, which is known to contain the histone gene cluster. We identified P-element insertions in the MESR4 locus, which were homozygous lethal during embryogenesis with defects in ventral ectoderm formation and head encapsulation. In the mutant embryos, expression of Fasciclin 3 (Fas3), an EGFR signal target gene was greatly reduced, and the level of EGFR signal-dependent double phosphorylated ERK (dp-ERK) remained low. However, in the context of wing vein formation, genetic interaction experiments suggested that MESR4 is involved in the EGFR signaling as a negative regulator. These results suggest that MESR4 is a novel chromatin-binding protein required for proper expression of genes including those regulated by the EGFR signaling pathway during development. This article is protected by copyright. All rights reserved.
    No preview · Article · Oct 2015 · genesis