Inorganic Chemistry (Inorg Chem)

Publisher: American Chemical Society, American Chemical Society

Journal description

Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and some aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds. Inorganic Chemistry offers full-length studies, shorter notes, and communications of immediate interest and has earned respect throughout the world for attracting and publishing outstanding research.

Current impact factor: 4.76

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.762
2013 Impact Factor 4.794
2012 Impact Factor 4.593
2011 Impact Factor 4.601
2010 Impact Factor 4.325
2009 Impact Factor 4.657
2008 Impact Factor 4.147
2007 Impact Factor 4.123
2006 Impact Factor 3.911
2005 Impact Factor 3.851
2004 Impact Factor 3.454
2003 Impact Factor 3.389
2002 Impact Factor 2.95
2001 Impact Factor 2.946
2000 Impact Factor 2.712
1999 Impact Factor 2.843
1998 Impact Factor 2.965
1997 Impact Factor 2.736
1996 Impact Factor 2.99
1995 Impact Factor 2.534
1994 Impact Factor 2.522
1993 Impact Factor 2.684
1992 Impact Factor 2.721

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.64
Cited half-life 7.80
Immediacy index 1.03
Eigenfactor 0.12
Article influence 1.01
Website Inorganic Chemistry website
Other titles Inorganic chemistry (Online), Inorganic chemistry
ISSN 1520-510X
OCLC 37637103
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

American Chemical Society

  • Pre-print
    • Author cannot archive a pre-print version
  • Restrictions
    • Must obtain written permission from Editor
    • Must not violate ACS ethical Guidelines
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • If mandated by funding agency or employer/ institution
    • If mandated to deposit before 12 months, must obtain waiver from Institution/Funding agency or use AuthorChoice
    • 12 months embargo
  • Conditions
    • On author's personal website, pre-print servers, institutional website, institutional repositories or subject repositories
    • Non-Commercial
    • Must be accompanied by set statement (see policy)
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • If mandated sooner than 12 months, must obtain waiver from Editors or use AuthorChoice
    • Reviewed on 07/08/2014
  • Classification
    white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel half-sandwich hydrosulfidoiridium(III) complexes [(η(5)-Cp*)Ir(phen)(SH)]PF6 (1), [(η(5)-Cp*)Ir(bpy)(SH)]PF6 (2), [(η(5)-Cp(biph))Ir(phen)(SH)]PF6 (3), and [(η(5)-Cp(biph))Ir(bpy)(SH)]PF6 (4) were prepared from the chlorido complexes by dechlorination and treatment with excess NaSH·xH2O; phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine, Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl, and Cp(biph) = 1,2,3,4-tetramethyl-5-biphenylcyclopentadienyl. Complexes 1-4 were characterized by various techniques including electrospray ionization mass spectrometry, NMR spectroscopy (δ(SH) ca. -2 ppm), and a single-crystal X-ray analysis. Complex [(η(5)-Cp*)Ir(phen)(SH)]BPh4 (1') shows a typical piano-stool geometry with Ir-S bond length of 2.388(2) Å. Cp(biph) complexes 3 (IC50 = 0.98 μM) and 4 (IC50 = 0.61 μM) showed significantly higher (p < 0.005) in vitro antiproliferative activity against A2780 human ovarian cancer cells, as compared with their Cp* analogues 1 (IC50 = 49.5 μM) and 2 (IC50 = 48.4 μM), and potency similar to the anticancer drug cisplatin. The complexes were relatively stable in aqueous solution toward hydrolysis and reactions with reduced glutathione (GSH), 9-ethylguanine, or 9-methyladenine. Interestingly, GSH was readily oxidized to glutathione disulfide in the presence of Cp(biph) complexes 3 and 4, as judged by (1)H NMR, perhaps indicative of a possible redox-linked mechanism of action.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The luminescence properties of Ce:LuPO4 depend on both the Ce(3+) center and the host lattice. In this article, we studied the dependence of the luminescence properties of Ce:LuPO4 on both the doping concentration of Ce(3+) and the size and morphology of the LuPO4 matrix at micro- and nanosize regimes. The crystalline behavior of Ce:LuPO4, including its size and shape, was investigated via precursor transformation crystallization. On the basis of this crystallization approach, Ce:LuPO4 hollow nanospheres, nanorods, and regular tetrahedrons were obtained. For micro- and nanostructured Ce:LuPO4, the surface-induced chemical bonding architecture can be effectively varied by controlling the size of the crystalline material and its geometry. Our experimental observations demonstrate that one-dimensional Ce:LuPO4 nanorods doped with 0.1 mol % Ce(3+) possess the best performance among the as-prepared samples. The significant anisotropy of Ce:LuPO4 nanorods can result in a larger specific surface area and enhanced luminescence properties. Moreover, the improved luminescence property of Ce:LuPO4 nanostructures can also be optimized by increasing the preferential anisotropic chemical bonding architecture to regulate the 5d level of Ce(3+). Our work also shows that the photoluminescence emission intensity of Ce:LuPO4 nanorods is increased as the surface area normal to their axial direction increases. From the standpoint of crystallization, the luminescence properties of Ce(3+) in nano- and microsize matrixes can be well-optimized by controlling the crystalline behavior of the host lattice under proper synthesis conditions.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The preparation of pure lithium niobate nanopowders was carried out by a matrix-mediated synthesis approach. Lithium hydroxide and niobium pentachloride were used as precursors. The influence of the chemical environment was studied by adding lithium halide (LiCl or LiBr). After thermal treatment of the precursor mixture at 550 °C for 30 min, the morphology of the products was obtained from transmission electron microscopy and dynamic light scattering, whereas the crystallinity and phase purity were characterized by X-ray diffraction and UV-visible and Raman spectroscopies. Our results point out that the chemical environment during lithium niobate formation at 550 °C influences the final morphology. Moreover, direct and indirect band-gap energies have been determined from UV-visible spectroscopy. Their values for the direct-band-gap energies range from 3.97 to 4.36 eV with a slight dependence on the Li/Nb ratio, whereas for the indirect-band-gap energies, the value appears to be independent of this ratio and is 3.64 eV. No dependence of the band-gap energies on the average crystallite and nanoparticle sizes is observed.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two Mn70 torus-like molecules have been obtained from the alcoholysis in EtOH and 2-ClC2H4OH of [Mn12O12(O2CMe)16(H2O)4]·4H2O·2MeCO2H (1) in the presence of NBu(n)4MnO4 and an excess of MeCO2H. The reaction in EtOH afforded [Mn70O60(O2CMe)70(OEt)20(EtOH)16(H2O)22] (2), whereas the reaction in ClC2H4OH gave [Mn70O60(O2CMe)70(OC2H4Cl)20(ClC2H4OH)18(H2O)22] (3). The complexes are nearly isostructural, each possessing a Mn70 torus structure consisting of alternating near-linear [Mn3(μ3-O)4] and cubic [Mn4(μ3-O)2(μ3-OR)2] (R = OEt, 2; R = OC2H4Cl, 3) subunits, linked together via syn,syn-μ-bridging MeCO2(-) and μ3-bridging O(2-) groups. 2 and 3 have an overall diameter of ∼4 nm and crystallize as highly ordered supramolecular nanotubes. Alternating current (ac) magnetic susceptibility measurements, performed on microcrystalline samples in the 1.8-10 K range and a 3.5 G ac field with oscillation frequencies in the 5-1500 Hz range, revealed frequency-dependent out-of-phase signals below ∼2.4 K for both molecules indicative of the slow magnetization relaxation of single-molecule magnets (SMMs). Single-crystal, magnetization vs field studies on both complexes revealed hysteresis loops below 1.5 K, thus confirming 2 and 3 to be new SMMs. The hysteresis loops do not show the steps that are characteristic of quantum tunneling of magnetization (QTM). However, low-temperature studies revealed temperature-independent relaxation rates below ∼0.2 K for both compounds, the signature of ground state QTM. Fitting of relaxation data to the Arrhenius equation gave effective barriers for magnetization reversal (Ueff) of 23 and 18 K for 2 and 3, respectively. Because the Mn70 molecule is close to the classical limit, it was also studied using a method based on the Néel-Brown model of thermally activated magnetization reversal in a classical single-domain magnetic nanoparticle. The field and sweep-rate dependence of the coercive field was investigated and yielded the energy barrier, the spin, the Arrhenius pre-exponential, and the cross-over temperature from the classical to the quantum regime. The validity of this approach emphasizes that large SMMs can be considered as being at or near the quantum-classical nanoparticle interface.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrated, for the first time, formation of the Na-α'-GeGaON (NamGe12-(m+n)Gam+nOnN16-n) solid solution, an analogue of the well-established α'-SiAlON system. We successfully synthesized single-phase powder samples by reduction-nitridation of Na2CO3-GeO2-Ga2O3, in the solubility range of m ≈ 0.8-1.7 with n ≈ 0.2-0.3. The Rietveld refinement of powder X-ray diffraction data for Na-α'-GeGaON was conducted on the basis of the space group P31c of α'-SiAlON, and the refinement converged with RB = 1.78% and RF = 1.02% for the composition of Na1.26(1)Ge10.50Ga1.50O0.24(1)N15.76(1), indicating reliably the isomorphism between the SiAlON and GeGaON systems. The results of (23)Na solid-state nuclear magnetic resonance (NMR) spectroscopy clearly showed a single peak at the chemical shift of ∼16 ppm, further proving the accommodation of Na in the α'-GeGaON matrix with the expected coordination environment. The synthesized Na-α'-GeGaON exhibited stable photocatalytic activity for the evolution of H2 from water under ultraviolet irradiation, which was comparable to that attained by β-Ge3N4.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbenes are known for their ability to abstract HCl from hydrochlorosilanes to form carbene hydrochloride adducts. In contrast, the Si-H bond insertion products RSiCl2(cAACH) (2, 4, 6, and 8) have been formed in the reaction of RSiHCl2 [R = Ar(SiMe3)N (1), Cp* (3), PhC(NtBu)2 (5), Cl (7); Ar = 2,6-iPr2C6H3] with a cyclic alkyl(amino) carbene (cAAC:) irrespective of the steric demand of the R group. The new products have been characterized by various analytical tools including X-ray crystallography, electron ionization mass spectrometry, and NMR spectroscopy. Theoretical investigations have also been performed to understand why cAAC prefers insertion into the Si-H bond rather than the dehydrohalogenation pathway.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cobalamins are known to react with thiols to yield stable β-axial Co(III)-S bonded thiolato-cobalamin complexes. However, in stark contrast to the Co-C bond in alkylcobalamins, the photolability of the Co-S bond in thiolato-cobalamins remains undetermined. We have investigated the photolysis of N-acetylcysteinyl cob(III)alamin at several wavelengths within the ultraviolet and visible spectrum. To aid in photolysis, we show that attaching fluorophore "antennae" to the cobalamin scaffold can improve photolytic efficiency by up to an order of magnitude. Additionally, electron paramagnetic resonance confirms previous conjectures that the photolysis of thiolato-cobalamins at wavelengths as long as 546 nm produces thiyl radicals.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chlorite-periodate reaction has been studied spectrophotometrically in acidic medium at 25.0 ± 0.1 °C, monitoring the absorbance at 400 nm in acetate/acetic acid buffer at constant ionic strength (I = 0.5 M). We have shown that periodate was exclusively reduced to iodate, but chlorite ion was oxidized to chlorate and chlorine dioxide via branching pathways. The stoichiometry of the reaction can be described as a linear combination of two limiting stoichiometries under our experimental conditions. Detailed initial rate studies have clearly revealed that the formal kinetic orders of hydrogen ion, chlorite ion, and periodate ion are all strictly one, establishing an empirical rate law to be d[ClO2]/dt = kobs[ClO2(-)][IO4(-)][H(+)], where the apparent rate coefficient (kobs) was found to be 70 ± 13 M(-2) s(-1). On the basis of the experiments, a simple four-step kinetic model with three fitted kinetic parameters is proposed by nonlinear parameter estimation. The reaction was found to proceed via a parallel oxygen transfer reaction leading to the exclusive formation of chlorate and iodate as well as via the formation of a short-lived key intermediate OClOIO3 followed by its further transformations by a sequence of branching pathways.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several amide-AlCl3-based ionic liquid (IL) analogues were synthesized through a one-step method using three different structure amides as donor molecules. The effects of the steric and inductive effects of the methyl group substituted on the N atom on the asymmetric splitting of AlCl3 and the coordination site of the amide were investigated by (27)Al NMR, Raman, in situ IR, and UV-vis spectra for these IL analogues. Bidentate coordination through both the O and N atoms was dominant in the N-methylacetamide-AlCl3- and N,N-dimethylacetamide-AlCl3-based IL analogues because of the inductive effect of the methyl group. By contrast, the acetamide-AlCl3-based IL analogue presented mainly in the form of monodentate coordination via the O atom. Compared with monodentate coordination, bidentate coordination was favorable to the asymmetric splitting of AlCl3 with the same amide-AlCl3 molar ratio. Under the influence of the steric and inductive effects of the methyl group, the ionic species percentages in these IL analogues ranked in the following order: N-methylacetamide > N,N-dimethylacetamide > acetamide.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new series of platinum iodates, namely, α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs), have been synthesized. Interestingly, among these six stoichiometrically identical compounds, α-(H3O)2Pt(IO3)6 is polar, whereas other compounds are nonpolar and centrosymmetric. They all consist of zero-dimensional [Pt(IO3)6](2-) molecular units separated by H3O(+) or A(+) cations. All of the lone electron pairs of the IO3(-) groups are aligned and almost point to one direction for α-(H3O)2Pt(IO3)6, whereas IO3(-) groups are located trans to each other in other compounds. The material, α-(H3O)2Pt(IO3)6, exhibits very strong second harmonic generation (SHG) effects, approximately 1.2 × KTiOPO4 (KTP), and is phase-matchable. Thermogravimetric analysis, elemental analysis, infrared spectra, UV-vis spectra, nonlinear optical properties, and theoretical calculations are also reported.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The [Mn12O12(O2CR)16(L4)] family (R = various; L = terminal ligand) of clusters holds a special place in molecular magnetism; they are the most well-studied single-molecule magnets (SMMs). Targeted linkage of these SMMs has now been achieved for the first time. The resulting chain structures have been confirmed crystallographically, and the magnetic properties, up to 1.14 GPa, and high-field electron paramagnetic resonance spectra have been collected and analyzed.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three compounds associating for the first time polyoxotungstates, bisphosphonates, and copper ions were structurally characterized. They consist in heteropolyanionic monodimensional materials where [Cu6(Ale)4(H2O)4](4-) (Ale = alendronate = [O3PC(O)(C3H6NH3)PO3](4-)) complexes alternate with polyoxometalate (POM) units. In Na12[{SiW9O34Cu3(Ale)(H2O)}{Cu6(Ale)4(H2O)4}]·50H2O (SiW9CuAle), the polyoxometalate core consists in a {SiW9Cu3} monomer capped by a pentacoordinated Ale ligand, while sandwich-type Keggin {(SbW9O33)2Cu3(H2O)2.5Cl0.5} and Dawson {(P2W15O56)2Cu4(H2O)2} complexes are found in Na8Li29[{(SbW9O33)2Cu3(H2O)2.5Cl0.5}2{Cu6(Ale)4(H2O)4}3]·163H2O (SbW9CuAle) and Na20[{(P2W15O56)2Cu4(H2O)2}{Cu6(Ale)4(H2O)4}]·50H2O (P2W15CuAle), respectively. A comparative magnetic study of the SiW9CuAle and SbW9CuAle compounds enabled full quantification of the Cu(II) superexchange interactions both for the POM and non-POM subunits, evidencing that, while the paramagnetic centers are anti-ferromagnetically coupled in the polyoxometalate units, both anti-ferromagnetic and ferromagnetic interactions coexist in the {Cu6(Ale)4(H2O)4} cluster. All the studied compounds present a good efficiency upon the reduction of HNO2 or NO2(-), the POM acting as a catalyst. However, it has been found that SbW9CuAle is inactive toward the reduction of nitrates, highlighting that both the {(SbW9O33)2Cu3} unit and the {Cu6(Ale)4(H2O)4} cluster do not act as electrocatalysts for this reaction. In contrast, SiW9CuAle and P2W15CuAle have shown a significant activity upon the reduction of NO3(-) and thus both at pH 1 and pH 5, evidencing that the chemical nature of the polyoxometalate is a crucial parameter even if it acts as precatalyst. Moreover, comparison of the activities of P2W15CuAle and [(P2W15O56)2Cu4(H2O)2](16-) evidenced that if the [Cu6(Ale)4(H2O)4](4-) cluster does not act as electrocatalyst, it acts as a cofactor, significantly enhancing the catalytic efficiency of the active POM.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of X in ambiphilic compounds BiX(o-PPh2-C6H4)2, PBiP-X, on metallophilic Pt-Bi interactions in its PtCl2 complexes two new derivatives PBiP-Me and PBiP-C6F5 were synthesized. Reaction with dichloro(1,5-cyclooctadiene)platinum(II) led to the platinum(II) complexes [PtCl2(PBiP-Me)], 3, and [PtCl2(PBiP-C6F5)], 4, which together with the halide [PtCl2(PBiP-Cl)], 2, reported previously, establish a series of related PBiP-X complexes differing only in X. This could be complemented by accessing [PtCl2(PBiP-OTf)], 5, through the reaction of 2 with AgOTf. Analysis of the geometrical and electronic structures of these complexes revealed that in all cases the platinum(II) centers act as donors (through their filled dz(2) orbitals) to the bismuth(III) centers (possessing σ*(Bi-X)/6p acceptor orbitals). The strength of these interactions increases with increasing electron-withdrawing character of X, which supports the conceptual approach in constructing this new class of compounds.
    No preview · Article · Feb 2016 · Inorganic Chemistry

  • No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The assembly of a fluorescent dicarboxylate ligand with a barium ion resulted in the formation of a 3D metal-organic framework, Ba5(ADDA)5(EtOH)2(H2O)3·5DMF (UPC-17), based on a 1D rod-shaped secondary building unit. The unprecedented solvent-dependent sensitivities of UPC-17 for the detection of Fe(3+)/Al(3+) ions and 4-nitrophenol with high efficiency were observed for the first time. Significantly, UPC-17 exhibits superior "turn-off" detection for the Fe(3+) ion in methanol and acetone emulsions but shows "turn-on" detection in tetrahydrofuran emulsion. Furthermore, the visible color changes in the detection process make them easy to distinguish by the naked eye, which further increases its application potential.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of [Nb6O19](8-) with H6TeO6 in water gives telluropentaniobate [(OH)TeNb5O18](6-) (1) as single product, which was isolated as Na(+) and mixed Na(+)/K(+) salts. Crystal structures were determined for Na6[(OH)TeNb5O18]·15H2O (Na6-1) and K6Na[Nb5.5{Te(OH)}0.5O18.5]·26H2O (K6Na-1). Formation of 1 was monitored with electrospray ionization mass spectrometry (ESI-MS) and (125)Te NMR techniques. Capillary electrophoresis was used to calculate electrophoretic mobilities and radii of the anionic species in solutions of [(OH)TeNb5O18](6-) and [Nb6O19](8-) in borate buffer. No condensation or degradation products were detected. Reactions of 1 with {Cp*Rh}(2+) sources gives 1:1 and 2:1 hybrid polyoxometalate, which are present in solution as a mixture of isomers, as detected by (125)Te NMR. The isomerism is related to various possibilities of coordination of {Cp*Rh}(2+) to different {M3O3} faces, relative to the unique Te atom. According to ESI-MS experiments in water and methanol, rapid redistribution of the organometallic fragments between the 1:1 and 2:1 complexes takes place. The 1:1 complexes are more stable in water, while 2:1 complexes dominate in methanol. X-ray structural analysis of the crystals isolated from 2:1 reaction mixture allowed identification of Na3[{Cp*Rh}2TeNb5O19]·24H2O (Cp*2Rh2-1) with two {Cp*Rh}(2+) fragments capping the opposing faces of the Lindqvist anion.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The iodine-arsenous acid (Roebuck), iodide-iodate (Dushman), and iodate-arsenous acid reactions have been studied simultaneously by a stopped-flow technique by monitoring the absorbance-time profiles at the isosbestic point of the I2/I3(-) system (468 nm). Using the well-accepted rate coefficients of iodine hydrolysis, we have proven that iodine is the kinetically active species of the iodine-arsenous acid reaction. Strong iodide inhibition of this system is explained by a rapidly established equilibrium between iodine and arsenous acid to produce an iodide ion, a hydrogen ion, and a short-lived intermediate H2AsO3I, which is shifted far to the left. Taking into consideration the generally accepted kinetic model of the Dushman reaction where I2O2 plays a key role to account for all of the most important observations in this subsystem and a sequence of simple formal oxygen-transfer reactions between arsenous acid and iodic acid as well as iodous acid and hypoiodous acid, we propose a 13-step comprehensive kinetic model, including seven rapidly established equilibria with only six fitted parameters, that is able to explain all of the most important characteristics of the kinetic curves of all of the title systems both individually and simultaneously.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single crystals of Pr2Fe4-xCoxSb5 (1 < x < 2.5) were grown from a Bi flux and characterized by X-ray diffraction. The compounds adopt the La2Fe4Sb5 structure type (I4/mmm). The structure of Pr2Fe4-xCoxSb5 (1 < x < 2.5) contains a network of transition metals forming isosceles triangles. The x ∼ 1 analogue is metallic and exhibits a magnetic transition at T1 ≈ 25 K. The magnetic moment obtained from the Curie-Weiss fit is 11.49(4) μB, which is larger than the spin-only Pr(3+) moment. The x ∼ 2 analogue orders magnetically at T1 ≈ 80 and T2 ≈ 45 K. This is the first case of the substitution of Co into the La2Fe4Sb5 structure type, evidenced by the increased concentration of dopant with decreased lattice parameters coupled with a change in the transition temperature with a change in the cobalt concentration. The added complexity in the magnetic behavior of the x ∼ 1 and 2 analogues indicates that the increased concentration of Co invokes an additional magnetic contribution of the transition metal in the sublattice. Furthermore, X-ray photoelectron spectroscopy measurements support the change in the oxidation states of transition metals with increasing cobalt concentration.
    No preview · Article · Feb 2016 · Inorganic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: (Ga1-xZnx)(N1-xOx) (GZNO) particles with enhanced optical absorption were synthesized by topotactic transformation of Zn(2+)/Ga(3+) layered double hydroxides. This outcome was achieved by suppressing Zn volatilization during nitridation by maintaining a low partial pressure of O2 (pO2). Zn-rich (x > (1)/3) variants of GZNO were achieved and compared to those prepared by conventional ammonoylsis conditions. The optical absorption and structural properties of these samples were compared to those prepared in the absence of O2 by diffuse-reflectance spectroscopy and powder X-ray diffraction methods. Notably, suppression of Zn volatilization leads to smaller-band-gap materials (2.30 eV for x = 0.42 versus 2.71 eV for x = 0.21) and reduced structural defects. This synthetic route and set of characterizations provide useful structure-property studies of GZNO and potentially other oxynitrides of interest as photocatalysts.
    No preview · Article · Feb 2016 · Inorganic Chemistry