Annals of Occupational Hygiene (Ann Occup Hyg)

Publisher: British Occupational Hygiene Society, Oxford University Press (OUP)

Journal description

The Annals of Occupational Hygiene aims to promote a healthy working environment by publishing research papers and reviews on health hazards and risks resulting from work, especially their recognition, quantification, management and control. The journal is interested in basic mechanisms, but also human aspects and technology. It includes papers on broader environmental risks to humans where these risks are closely related to work.Topics covered include (but are not limited) to the following:chemical, physical and biological agents; their mechanisms of formation, emission, exposure, absorption and effectmeasurement, control, process design, ergonomics and protectionoccupational toxicology and epidemiologyassessment and management of risk, education and trainingThe journal includes papers, short communications and letters to the editor. For further details of these, see Instructions to Authors, near the end of each issue.The Annals of Occupational Hygiene is the official journal of the British Occupational Hygiene Society It was founded in 1958 and is edited by Trevor Ogden (Editor in Chief) and Stephen Rappaport (North American Editor).ANNOUNCEMENT: For the second year in succession, the Impact Factor of the Annals of Occupational Hygiene has reached an all-time high. The current Impact Factor (1999) is 1.577.

Current impact factor: 2.10

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.101
2013 Impact Factor 2.068
2012 Impact Factor 2.157
2011 Impact Factor 1.949
2010 Impact Factor 2.014
2009 Impact Factor 1.914
2008 Impact Factor 1.787
2007 Impact Factor 1.493
2006 Impact Factor 1.919
2005 Impact Factor 1.144
2004 Impact Factor 1.234
2003 Impact Factor 1.357
2002 Impact Factor 1.262
2001 Impact Factor 1.222
2000 Impact Factor 1.064
1999 Impact Factor 1.577
1998 Impact Factor 1.398
1997 Impact Factor 0.818
1996 Impact Factor 0.872
1995 Impact Factor 0.904
1994 Impact Factor 0.657
1993 Impact Factor 0.673
1992 Impact Factor 0.692

Impact factor over time

Impact factor

Additional details

5-year impact 2.04
Cited half-life 9.10
Immediacy index 0.43
Eigenfactor 0.00
Article influence 0.59
Website Annals of Occupational Hygiene website
Other titles Annals of occupational hygiene (Online)
ISSN 1475-3162
OCLC 39263378
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Oxford University Press (OUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Eligible authors may deposit in OpenDepot
    • The publisher will deposit in PubMed Central on behalf of NIH authors
    • Publisher last contacted on 19/02/2015
    • This policy is an exception to the default policies of 'Oxford University Press (OUP)'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: To efficiently and reproducibly assess occupational diesel exhaust exposure in a Spanish case-control study, we examined the utility of applying decision rules that had been extracted from expert estimates and questionnaire response patterns using classification tree (CT) models from a similar US study. Methods: First, previously extracted CT decision rules were used to obtain initial ordinal (0-3) estimates of the probability, intensity, and frequency of occupational exposure to diesel exhaust for the 10 182 jobs reported in a Spanish case-control study of bladder cancer. Second, two experts reviewed the CT estimates for 350 jobs randomly selected from strata based on each CT rule's agreement with the expert ratings in the original study [agreement rate, from 0 (no agreement) to 1 (perfect agreement)]. Their agreement with each other and with the CT estimates was calculated using weighted kappa (κw) and guided our choice of jobs for subsequent expert review. Third, an expert review comprised all jobs with lower confidence (low-to-moderate agreement rates or discordant assignments, n = 931) and a subset of jobs with a moderate to high CT probability rating and with moderately high agreement rates (n = 511). Logistic regression was used to examine the likelihood that an expert provided a different estimate than the CT estimate based on the CT rule agreement rates, the CT ordinal rating, and the availability of a module with diesel-related questions. Results: Agreement between estimates made by two experts and between estimates made by each of the experts and the CT estimates was very high for jobs with estimates that were determined by rules with high CT agreement rates (κ w: 0.81-0.90). For jobs with estimates based on rules with lower agreement rates, moderate agreement was observed between the two experts (κw: 0.42-0.67) and poor-to-moderate agreement was observed between the experts and the CT estimates (κw: 0.09-0.57). In total, the expert review of 1442 jobs changed 156 probability estimates, 128 intensity estimates, and 614 frequency estimates. The expert was more likely to provide a different estimate when the CT rule agreement rate was <0.8, when the CT ordinal ratings were low to moderate, or when a module with diesel questions was available. Conclusions: Our reliability assessment provided important insight into where to prioritize additional expert review; as a result, only 14% of the jobs underwent expert review, substantially reducing the exposure assessment burden. Overall, we found that we could efficiently, reproducibly, and reliably apply CT decision rules from one study to assess exposure in another study.
    No preview · Article · Jan 2016 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hamilton and Hardy's Industrial Toxicology is now 80 years old, and the new sixth edition links us with a pioneer era. This is an impressive book, but the usefulness of the hardback version as a reference book is unfortunately limited by its poor index. There is now an ebook version, and for the practitioner on the move this has the great advantages of searchability and portability. However, Wiley ebooks can apparently only be downloaded when first purchased, so their lifetime is limited to that of the device. The Kindle edition should avoid this shortcoming.
    No preview · Article · Dec 2015 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: High and low flow rate respirable size selective samplers including the CIP10-R (10 l min(-1)), FSP10 (11.2 l min(-1)), GK2.69 (4.4 l min(-1)), 10-mm nylon (1.7 l min(-1)), and Higgins-Dewell type (2.2 l min(-1)) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio <0.3 or >3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling.
    No preview · Article · Nov 2015 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Methods: Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product-moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. Results: The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs' measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs. Conclusions: The comparison between the concentrations of each of the 10 selected VOCs measured by the two sampling methods indicted that the thermal desorption tubes provided high accuracy and precision measurements for acetone, benzene, and 1,3-butadiene. The accuracy and precision of using the thermal desorption tubes for measuring the VOCs can be improved due to new developments in sorbent materials, multi-sorbent designs, and thermal desorption instrumentation. More applications of thermal desorption tubes for measuring occupational and environmental hazardous agents can be anticipated.
    No preview · Article · Nov 2015 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: The state-of-the-art for personal sampling for inhalable aerosol hazards is constrained by issues of sampler cost and complexity; these issues have limited the adoption and use of some samplers by practicing hygienists. Thus, despite the known health effects of inhalable aerosol hazards, personal exposures are routinely assessed for only a small fraction of the at-risk workforce. To address the limitations of current technologies for inhalable aerosol sampling, a disposable inhalable aerosol sampler was developed and evaluated in the laboratory. The new sampler is designed to be less expensive and simpler to use than existing technologies. The sampler incorporates a lightweight internal capsule fused to the sampling filter. This capsule-filter assembly allows for the inclusion of particles deposited on the internal walls and inlet, thus minimizing the need to wash or wipe the interior sampling cassette when conducting gravimetric analyses. Sampling efficiency and wall losses were tested in a low-velocity wind tunnel with particles ranging from 9.5 to 89.5 μm. The results were compared to the proposed low-velocity inhalability criterion as well as published data on the IOM sampler. Filter weight stability and time-to-equilibrium were evaluated as these factors affect the practicality of a design. Preliminary testing of the new sampler showed good agreement with both the IOM and the proposed low-velocity inhalability curve. The capsule and filter assemblies reached equilibrium within 25h of manufacturing when conditioned at elevated temperatures. After reaching equilibrium, the capsule-filter assemblies were stable within 0.01mg.
    No preview · Article · Oct 2015 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2×10(3) to 4.3×10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.
    No preview · Article · Oct 2015 · Annals of Occupational Hygiene
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases.
    No preview · Article · Oct 2015 · Annals of Occupational Hygiene