Proceedings of the Royal Society B: Biological Sciences (Proc Biol Sci)

Publisher: Royal Society (Great Britain), Royal Society, The

Journal description

Proceedings B welcomes papers of high quality in any area of biological science. As a fast track journal, Proceedings B specialises in the rapid delivery of the latest research to the scientific community, normally within three months of acceptance. It is published on the 7th and 22nd of each month. Many more good manuscripts are submitted to us, than we have space to print, and we give preference to those that present significant advances of broad interest. Submission of preliminary reports, of papers that merely confirm previous findings, and of papers that are likely to interest only small groups of specialists, is not encouraged. All papers are sent to Editorial Board members for an initial assessment of their suitability, and may be returned to authors without in-depth peer-review if this assessment makes it seem unlikely that they will be accepted.

Current impact factor: 5.05

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 5.051
2013 Impact Factor 5.292
2012 Impact Factor 5.683
2011 Impact Factor 5.415
2010 Impact Factor 5.064
2008 Impact Factor 4.248
2007 Impact Factor 4.112
2006 Impact Factor 3.612
2005 Impact Factor 3.51
2004 Impact Factor 3.653
2003 Impact Factor 3.544
2002 Impact Factor 3.396
2001 Impact Factor 3.192
2000 Impact Factor 3.037
1999 Impact Factor 2.755
1998 Impact Factor 3.033
1997 Impact Factor 2.873

Impact factor over time

Impact factor

Additional details

5-year impact 5.65
Cited half-life 8.50
Immediacy index 0.95
Eigenfactor 0.09
Article influence 2.29
Website Proceedings of the Royal Society B: Biological Sciences website
Other titles Biology letters., Proceedings., Proceedings - Royal Society. Biological sciences, Biological sciences, Proceedings of the Royal Society of London., Proceedings of the Royal Society
ISSN 1471-2954
OCLC 44150803
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Royal Society, The

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on free public servers
    • Author's post-print on author's personal website or institutional website immediately
    • Author's post-print on institutional repository or not-for-profit open access repository after 12 months embargo
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged with citation close to title of article
    • Must link to publisher version close to title of article
    • If funding agency rules apply, authors may post articles in PubMed Central 12 months after publication
    • Eligible UK authors may deposit in Open Depot (after 12 months)
    • Publisher last contacted on 21/04/2015
  • Classification

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Competition for resources is thought to play a critical role in both the origins and maintenance of biodiversity. Although numerous laboratory evolution experiments have confirmed that competition can be a key driver of adaptive diversification, few have demonstrated its role in the maintenance of the resulting diversity. We investigate the conditions that favour the origin and maintenance of alternative generalist and specialist resource-use phenotypes within the same population. Previously, we confirmed that competition for hosts among φ6 bacteriophage in a mixed novel (non-permissive) and ancestral (permissive) host microcosm triggered the evolution of a generalist phenotype capable of infecting both hosts. However, because the newly evolved generalists tended to competitively exclude the ancestral specialists, coexistence between the two phenotypes was rare. Here, we show that reducing the relative abundance of the novel host slowed the increase in frequency of the generalist phenotype, allowing sufficient time for the specialist to further adapt to the ancestral host. This adaptation resulted in 'evolutionary rescue' of the specialists, preventing their competitive exclusion by the generalists. Thus, our results suggest that competition promotes both the origin and maintenance of biodiversity when it is strong enough to favour a novel resource-use phenotype, but weak enough to allow adaptation of both the novel and ancestral phenotypes to their respective niches.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early pig farmers in Europe imported Asian pigs to cross with their local breeds in order to improve traits of commercial interest. Current genomics techniques enabled genome-wide identification of these Asian introgressed haplotypes in modern European pig breeds. We propose that the Asian variants are still present because they affect phenotypes that were important for ancient traditional, as well as recent, commercial pig breeding. Genome-wide introgression levels were only weakly correlated with gene content and recombination frequency. However, regions with an excess or absence of Asian haplotypes (AS) contained genes that were previously identified as phenotypically important such as FASN, ME1, and KIT. Therefore, the Asian alleles are thought to have an effect on phenotypes that were historically under selection. We aimed to estimate the effect of AS in introgressed regions in Large White pigs on the traits of backfat (BF) and litter size. The majority of regions we tested that retained Asian deoxyribonucleic acid (DNA) showed significantly increased BF from the Asian alleles. Our results suggest that the introgression in Large White pigs has been strongly determined by the selective pressure acting upon the introgressed AS. We therefore conclude that human-driven hybridization and selection contributed to the genomic architecture of these commercial pigs.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews the development of the immune response through neonatal, infant and adult life, including pregnancy, ending with the decline in old age. A picture emerges of a child born with an immature, innate and adaptive immune system, which matures and acquires memory as he or she grows. It then goes into decline in old age. These changes are considered alongside the risks of different types of infection, autoimmune disease and malignancy.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that-even at large sample sizes-these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens.
    Preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ecological baselines are disappearing and it is uncertain how marine reserves, here called fisheries closures, simulate pristine communities. We tested the influence of fisheries closure age, size and compliance on recovery of community biomass and life-history metrics towards a baseline. We used census data from 324 coral reefs, including 41 protected areas ranging between 1 and 45 years of age and 0.28 and 1430 km(2), and 36 sites in a remote baseline, the Chagos Archipelago. Fish community-level life histories changed towards larger and later maturing fauna with increasing closure age, size and compliance. In high compliance closures, community biomass levelled at approximately 20 years and 10 km(2) but was still only at approximately 30% of the baseline and community growth rates were projected to slowly decline for more than 100 years. In low compliance and young closures, biomass levelled at half the value and time as high compliance closures and life-history metrics were not predicted to reach the baseline. Biomass does not adequately reflect the long-time scales for full recovery of life-history characteristics, with implications for coral reef management.
    No preview · Article · Dec 2015 · Proceedings of the Royal Society B: Biological Sciences