BMC Medical Imaging (BMC Med Imag)

Publisher: BioMed Central

Journal description

BMC Medical Imaging publishes original research articles in the use, development, and evaluation of imaging techniques to diagnose and manage disease.

Current impact factor: 1.31

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.312
2013 Impact Factor 0.983

Additional details

5-year impact 0.00
Cited half-life 4.50
Immediacy index 0.10
Eigenfactor 0.00
Article influence 0.00
Website BMC Medical Imaging website
Other titles BMC medical imaging, BioMed Central medical imaging, Medical imaging
ISSN 1471-2342
OCLC 48748135
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoidosis–lymphoma syndrome (SLS) is a rare disease in which both entities coexist. We aimed to study the role of 18 F-fluorodeoxyglucose (FDG) and L–[3- 18 F] α-methyltyrosine (FAMT) positron emission tomography (PET)/computed tomography (CT) in differentiating between these two lesions. Case presentation A 54-year-old female with large liver tumors was referred to our Nuclear Medicine Department for staging using FDG PET/CT. She had a history of primary biliary cirrhosis (PBC) for 15 years and developed lung and mediastinal sarcoidosis 1 year before the liver tumors were noted. Abdominal dynamic CT revealed two well-circumscribed, peripherally-enhancing, low-density masses in the right lobe of the liver with intensive ring-form FDG uptakes at maximum standard uptake values (SUVmax) of 18.3 and 19.5, respectively. In the arterial phase, a hepatic artery was seen penetrating the tumor, a phenomenon known as “angiogram sign”. Chest PET/CT findings showed irregular thickening of the bronchovascular bundles, central peribronchial shaggy consolidations in the right middle and lower lobes (SUVmax, 4.6), and mediastinal and hilar lymphadenopathies (SUVmax, 2.7). After assessment, chemotherapy with rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone (R–CHOP) was administered for eight cycles. Follow-up imaging studies using FDG and FAMT PET/CT were performed 3 months after the last cycle of chemotherapy, which showed that the two highly FDG-avid tumors in the liver had disappeared. However, faint FDG uptake persisted in the lung consolidations (SUVmax, 6.3), and FDG uptake for the mediastinal lymphadenopathies increased (SUVmax of 5.8). In contrast, there was no significant uptake of FAMT in the liver, as well as in the lungs and the bilateral mediastinal lymphadenopathies. These discrepant uptakes between FDG and FAMT were compatible with sarcoidosis. Combination of FDG and FAMT in PET/CT studies may play an important role in the management of SLS patients, especially in differentiating between sarcoidosis and lymphoma lesions.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • [Show abstract] [Hide abstract]
    ABSTRACT: The staging of axillary lymph nodes is critical to the management and prognosis of breast cancer, the most frequent cancer in females. Neoadjuvant therapy and lymph node dissection are recommended when malignant cells invade the lymph nodes. Therefore the pre-operative examination of these lymph nodes is crucial to treatment. In this study, we examined the effectiveness of cytology through ultrasound-guided fine needle aspiration (USG-FNA) and ultrasound (US) imaging using an established classification system in correctly identifying lymph node status compared to the final histological results after surgery. Cytology by USG-FNA and US classification were found to be promising methods of axillary lymph node staging. US and CB offer minimally invasive techniques to pre-operatively examine these lymph nodes in patients with primary breast cancer.
    No preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paraneoplastic limbic encephalitis is an uncommon association of common malignancies such as small cell lung carcinoma, testicular teratoma, and breast carcinoma. The nonspecific nature of the clinical presentation, lack of freely available diagnostic markers, and requirement for advanced imaging techniques pose a great challenge in the diagnosis of this disease in resource-poor settings. Care presentation A 64-year-old previously healthy Sri Lankan man was admitted to the general medical unit with subacute memory impairment regarding recent events that had occurred during the previous 3 weeks. Initial noncontrast computed tomography of the brain revealed a hyperdensity in the hypothalamic region surrounded by hypodensities extending toward the bilateral temporal lobes; these findings were consistent with a possible hypothalamic tumor with perilesional edema. The patient later developed cranial diabetes insipidus, which was further suggestive of hypothalamic disease. Interestingly, gadolinium-enhanced magnetic resonance imaging of the brain showed no such lesions; instead, it showed prominent T2-weighted signals in the inner mesial region, characteristic of encephalitis. The possibility of tuberculosis and viral encephalitis was excluded based on cerebrospinal fluid analysis results. Limbic encephalitis with predominant hypothalamitis was suspected based on the radiological pattern. Subsequent screening for underlying malignancy revealed a mass lesion in the right hilum on chest radiographs. Histological examination of the lesion showed small cell lung cancer of the “oat cell” variety. We suggest that the initial appearance of a hyperdensity in the hypothalamus region on noncontrast computed tomography is probably due to hyperemia caused by hypothalamitis. If hypothalamitis is predominant in a patient with paraneoplastic limbic encephalitis, magnetic resonance imaging will help to differentiate it from a hypothalamic secondary deposit. Limbic encephalitis should be considered in a patient with computed tomographic evidence of a central hyperdensity surrounded by bitemporal hypodensities. This pattern of identification will be useful for early diagnosis in resource-poor settings.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In preclinical research Matrixgel TM Basement Membrane Matrix (MG) is used frequently for the establishment of syngeneic and xenograft cancer models. Limited information on its influence on parameters including; tumor growth, vascularization, hypoxia and imaging characteristics is currently available. This study evaluates the potential effect of matrigel use in a human head and neck cancer xenograft model (FaDu; hypopharyngeal carcinoma) in NMRI nude mice. The FaDu cell line was chosen based on its frequent use in studies of cancer imaging and tumor microenvironment. NMRI nude mice (n = 34) were divided into two groups and subcutaneously injected with FaDu cells in medium either including (+MG) or excluding matrigel (−MG). In sub study I seven mice from each group (+MG, n = 7; −MG, n = 7) were 18 F- fluorodeoxyglucose ( 18 F-FDG) PET/CT scanned on Day 5, 8, 12, 15, and 19. In sub study II ten mice from each group (+MG, n = 10; −MG, n = 10) were included and tumors collected for immunohistochemistry (IHC) analysis of tumor microenvironment including; proliferation ratio, micro vessel density, average vessel area, hypoxia, nuclear density, and necrosis. Tumors for IHC were collected according to size (200–400 mm 3 , 500–700 mm 3 , 800–1100 mm 3 ). FDG uptake and tumor growth was statistically compatible for the tumors established with or without MG. The IHC analysis on all parameters only identified a significantly higher micro vessel density for tumor size 500–700 mm 3 and 800–1100 mm 3 and average vessel area for tumor size 500–700 mm 3 in the −MG group. Comparable variations were observed for tumors of both the +MG and −MG groups. No difference in tumor take rate was observed between groups in study. Matrigel did not affect tumor growth or tumor take for the FaDu xenograft model evaluated. Tumors in the -MG group displayed increased angiogenesis compared to the +MG tumors. No difference in 18 F-FDG PET uptake for tumors of different groups was found. Based on these observations the influence of matrigel on tumor imaging and tumor microenvironment seems minor for this particular xenograft model.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). Methods: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. Results: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. Conclusions: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the feature values of head and neck paragangliomas on diffusion-weighted imaging (DWI) and dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI). Patients with primary head and neck paraganglioma who underwent both DWI and DCE-MRI before treatment between January 2010 and June 2013 were identified. Two radiologists assessed apparent diffusion coefficient (ADC) values on DWI and kinetic characteristics on DCE-MRI. The time intensity curves (TICs) and dynamic parameters, including peak height (PH), maximum enhancement ratio (ER max ), time to peak enhancement (T peak ) and maximum rise slope (Slope max ), were generated and evaluated. Ten patients with head and neck paraganglioma were retrospectively analyzed. On conventional MRI, the tumors demonstrated as well-circumscribed, strongly enhanced lesions. Mean ADC value of the lesions was 1.12 ± 0.15 × 10 −3 mm 2 /s. The TICs demonstrated washout pattern (type-III) in all lesions. The mean PH, ER max , T peak and Slope max value was 121.24 ± 63.99, 193.79 ± 67.18, 8.16 ± 3.29 and 25.42 ± 7.91, respectively. Head and neck paragangliomas demonstrate distinctive DWI and DCE-MRI results than for other benign tumors which should be taken into account in further evaluation of MRI on head and neck lesions.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: From the viewpoint of the patients' health, reducing the radiation dose in computed tomography (CT) is highly desirable. However, projection measurements acquired under low-dose conditions will contain much noise. Therefore, reconstruction of high-quality images from low-dose scans requires effective denoising of the projection measurements. Methods: We propose a denoising algorithm that is based on maximizing the data likelihood and sparsity in the gradient domain. For Poisson noise, this formulation automatically leads to a locally adaptive denoising scheme. Because the resulting optimization problem is hard to solve and may also lead to artifacts, we suggest an explicitly local denoising method by adapting an existing algorithm for normally-distributed noise. We apply the proposed method on sets of simulated and real cone-beam projections and compare its performance with two other algorithms. Results: The proposed algorithm effectively suppresses the noise in simulated and real CT projections. Denoising of the projections with the proposed algorithm leads to a substantial improvement of the reconstructed image in terms of noise level, spatial resolution, and visual quality. Conclusion: The proposed algorithm can suppress very strong quantum noise in CT projections. Therefore, it can be used as an effective tool in low-dose CT.
    Preview · Article · Dec 2016 · BMC Medical Imaging

  • No preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of this study was to compare the properties and feasibility of the glucose analog, 2-18F-fluoro-2-deoxy-D-glucose (18F-FDG), three short 18F-labeled carboxylic acids, 18F-fluoroacetate (18F-FAC), 2-18F-fluoropropionic acid (18F-FPA) and 4-(18F)fluorobenzoic acid (18F-FBA), for differentiating tumors from inflammation. Methods: Biodistributions of 18F-FAC, 18F-FPA and 18F-FBA were determined on normal Kunming mice, and positron emission tomography (PET) imaging with these tracers were performed on the separate tumor-bearing mice model and inflammation mice model in comparison with 18F-FDG. Results: Biodistribution results showed that 18F-FAC and 18F-FPA had similar biodistribution profiles and the slow radioactivity clearance from most tissues excluding the in vivo defluorination of 18F-FAC, and 18F-FBA demonstrated a lower uptake and fast clearance in most tissues. PET imaging with 18F-FDG, 18F-FAC and 18F-FPA revealed the high uptake in both tumor and inflammatory lesions. The ratios of tumor-to-inflammation were 1.63 ± 0.28 for 18F-FDG, 1.20 ± 0.38 for 18F-FAC, and 1.41 ± 0.33 for 18F-FPA at 60min postinjection, respectively. While clear tumor images with high contrast between tumor and inflammation lesion were observed in 18F-FBA/PET with the highest ratio of tumor-to-inflammation (1.98 ± 0.15). Conclusions: Our data demonstrated 18F-FBA is a promising PET probe to distinguish tumor from inflammation. But the further modification of 18F-FBA structure is required to improve its pharmacokinetics.
    Preview · Article · Dec 2016 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contributing reviewers The editors of BMC Medical Imaging would like to thank all our reviewers who have contributed to the journal in Volume 14 (2014).
    Full-text · Article · Dec 2015 · BMC Medical Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To set up a method for measuring radiographic displacement of unstable pelvic ring fractures based on standardized X-ray images and then test its reliability and validity using a software-based measurement technique. Twenty-five patients that were diagnosed as AO/OTA type B or C pelvic fractures with unilateral pelvis fractured and dislocated were eligible for inclusion by a review of medical records in our clinical centre. Based on the input pelvic preoperative CT data, the standardized X-ray images, including inlet, outlet, and anterior-posterior (AP) radiographs, were simulated using Armira software (Visage Imaging GmbH, Berlin, Germany). After representative anatomic landmarks were marked on the standardized X-ray images, the 2-dimensional (2D) coordinates of these points could be revealed in Digimizer software (Model: Mitutoyo Corp., Tokyo, Japan). Subsequently, we developed a formula that indicated the translational and rotational displacement patterns of the injured hemipelvis. Five separate observers calculated the displacement outcomes using the established formula and determined the rotational patterns using a 3D-CT model based on their overall impression. We performed 3D reconstruction of all the fractured pelvises using Mimics (Materialise, Haasrode, Belgium) and determined the translational and rotational displacement using 3-matic suite. The interobserver reliability of the new method was assessed by comparing the continuous measure and categorical outcomes using intraclass correlation coefficient (ICC) and kappa statistic, respectively. The interobserver reliability of the new method for translational and rotational measurement was high, with both ICCs above 0.9. Rotational outcome assessed by the new method was the same as that concluded by 3-matic software. The agreement for rotational outcome among orthopaedic surgeons based on overall impression was poor (kappa statistic, 0.250 to 0.426). Compared with the 3D reconstruction outcome, the interobserver reliability of the formula method for translational and rotational measures was perfect with both ICCs more than 0.9. The new method for measuring displacement using a formula was reliable, and could minimise the measurement errors and maximise the precision of pelvic fracture description. Furthermore, this study was useful for standardising the operative plan and establishing a theoretical basis for robot-assisted pelvic fracture surgery based on 2-D radiographs.
    Full-text · Article · Dec 2015 · BMC Medical Imaging
  • [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs.
    No preview · Article · Dec 2015 · BMC Medical Imaging