BMC Genomics (BMC GENOMICS)

Publisher: BioMed Central

Journal description

BMC Genomics publishes original research articles in all aspects of gene mapping, sequencing and analysis, functional genomics, and proteomics.

Current impact factor: 3.99

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 3.986
2013 Impact Factor 4.041
2012 Impact Factor 4.397
2011 Impact Factor 4.073
2010 Impact Factor 4.206
2009 Impact Factor 3.759
2008 Impact Factor 3.926
2007 Impact Factor 4.18
2006 Impact Factor 4.029
2005 Impact Factor 4.092
2004 Impact Factor 3.25

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.36
Cited half-life 4.30
Immediacy index 0.51
Eigenfactor 0.09
Article influence 1.35
Website BMC Genomics website
Other titles BMC genomics, Genomics
ISSN 1471-2164
OCLC 45259143
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytoplasmic male sterility (CMS) provides crucial breeding materials that facilitate hybrid seed production in various crops, and thus plays an important role in the study of hybrid vigor (heterosis), in plants. However, the CMS regulatory network in soybean remains unclear. MicroRNAs (miRNAs) play crucial roles in flower and pollen development by targeting genes that regulate their expression in plants. To identify the miRNAs and their targets that exist in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput sequencing and degradome analysis were conducted in this study. Two small RNA libraries were constructed from the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. A total of 105 new miRNAs present on the other arm of known pre-miRNAs, 23 new miRNA members, 158 novel miRNAs and 160 high-confidence soybean miRNAs were identified using high-throughput sequencing. Among the identified miRNAs, 101 differentially expressed miRNAs with greater than two-fold changes between NJCMS1A and NJCMS1B were discovered. The different expression levels of selected miRNAs were confirmed by stem-loop quantitative real-time PCR. A degradome analysis showed that 856 targets were predicted to be targeted by 296 miRNAs, including a squamosa promoter-binding protein-like transcription factor family protein, a pentatricopeptide repeat-containing protein, and an auxin response factor, which were previously shown to be involved in floral organ or anther development in plants. Additionally, some targets, including a MADS-box transcription factor, NADP-dependent isocitrate dehydrogenase and NADH-ubiquinone oxidoreductase 24 kDa subunit, were identified, and they may have some relationship with the programmed cell death, reactive oxygen species accumulation and energy deficiencies, which might lead to soybean male sterility. The present study is the first to use deep sequencing technology to identify miRNAs and their targets in the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. The results revealed that the miRNAs might participate in flower and pollen development, which could facilitate our understanding of the molecular mechanisms behind CMS in soybean.
    Preview · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background MADS-box genes encode transcription factors that are involved in developmental control and signal transduction in eukaryotes. In plants, they are associated to numerous development processes most notably those related to reproductive development: flowering induction, specification of inflorescence and flower meristems, establishment of flower organ identity, as well as regulation of fruit, seed and embryo development. Genomic analyses of MADS-box genes in different plant species are providing new relevant information on the function and evolution of this transcriptional factor family. We have performed a true genome-wide analysis of the complete set of MADS-box genes in grapevine (Vitis vinifera), analyzed their expression pattern and establish their phylogenetic relationships (including MIKC* and type I MADS-box) with genes from 16 other plant species. This study was integrated to previous works on the family in grapevine. Results A total of 90 MADS-box genes were detected in the grapevine reference genome by completing current gene annotations with a genome-wide analysis based on sequence similarity. We performed a thorough in-depth curation of all gene models and combined the results with gene expression information including RNAseq data to clarifying the expression of newly identified genes and improve their functional characterization. Curated data were uploaded to the ORCAE database for grapevine in the frame of the grapevine genome curation effort. This approach resulted in the identification of 30 additional MADS box genes. Among them, ten new MIKCC genes were identified, including a potential new group of short proteins similar to the SVP protein subfamily. The MIKC* subgroup contains six genes in grapevine that can be grouped in the S (4 genes) and P (2 genes) clades, showing less redundancy than that observed in Arabidopsis thaliana. Expression pattern of these genes in grapevine is compatible with a role in male gametophyte development. Most of the identified new genes belong to the type I MADS-box genes and were classified as members of the Mα and Mγ subclasses. Ours analyses indicate that only few members of type I genes in grapevine have homology in other species and that species-specific clades appeared both in the Mα and Mγ subclasses. On the other hand, as deduced from the phylogenetic analysis with other plant species, genes that can be crucial for development of central cell, endosperm and embryos seems to be conserved in plants. Conclusions The genome analysis of MADS-box genes in grapevine, the characterization of their pattern of expression and the phylogenetic analysis with other plant species allowed the identification of new MADS-box genes not yet described in other plant species as well as basic characterization of their possible role, particularly in the case of type I and MIKC* genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2398-7) contains supplementary material, which is available to authorized users.
    Full-text · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Head and neck cancer is morbid with a poor prognosis that has not significantly improved in the past several decades. The purpose of this study was to identify biological pathways underlying progressive head and neck cancer to inform prognostic and adjuvant strategies. We identified 235 head and neck cancer patients in The Cancer Genome Atlas (TCGA) with sufficient clinical annotation regarding therapeutic treatment and disease progression to identify progressors and non-progressors. We compared primary tumor gene expression and mutational status between these two groups. Results: 105 genes were differentially expressed between progressors and nonprogressors (FDR < 0.05). Pathway analyses revealed deregulation (FDR < 0.05) of multiple pathways related to integrin signaling as well as IL-10 signaling. A number of genes were uniquely mutated in the progressor cohort including increased frequency of truncating mutations in CTCF (P = 0.007). An 11-gene signature derived from a combination of unique mutations and differential expression was identified (PAGE4, SMTNL1, VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5, SEZ6L, CREB3). This signature was associated with decreased overall survival (Logrank Test; P = 0.03443). Cox modeling of both key clinical features and the signature was significant (P = 0.032) with the greatest prognostic improvement seen in the model based on nodal extracapsular spread and alcohol use alone (P = 0.004). Conclusions: Molecular analyses of head and neck cancer tumors that progressed despite treatment, identified IL-10 and integrin pathways to be strongly associated with cancer progression. In addition, we identified an 11-gene signature with implications for patient prognostication. Mutational analysis highlighted a potential role for CTCF, a crucial regulator of long-range chromatin interactions, in head and neck cancer progression.
    Preview · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mycobacterium avium subspecies paratuberculosis (Map) is an infectious enteric pathogen that causes Johne's disease in livestock. Determining genetic diversity is prerequisite to understanding the epidemiology and biology of Map. We performed the first whole genome sequencing (WGS) of 141 global Map isolates that encompass the main molecular strain types currently reported. We investigated the phylogeny of the Map strains, the diversity of the genome and the limitations of commonly used genotyping methods. Results: Single nucleotide polymorphism (SNP) and phylogenetic analyses confirmed two major lineages concordant with the former Type S and Type C designations. The Type I and Type III strain groups are subtypes of Type S, and Type B strains are a subtype of Type C and not restricted to Bison species. Conclusions: This study clarifies the phylogenetic relationships between the previously described Map strain groups, and highlights the limitations of current genotyping techniques. Map isolates exhibit restricted genetic diversity and a substitution rate consistent with a monomorphic pathogen. WGS provides the ultimate level of resolution for differentiation between strains. However, WGS alone will not be sufficient for tracing and tracking Map infections, yet importantly it can provide a phylogenetic context for affirming epidemiological connections.
    Full-text · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Harmful algal blooms (HABs) caused by the dinoflagellate Cochlodinium polykrikoides lead to severe environmental impacts in oceans worldwide followed by huge economic losses. Algicide agent copper sulfate (CuSO 4 ) is regard as an economical and effective agent for HABs mitigation; its biochemical and physiological effects were revealed in C. polykrikoides. However, molecular mechanisms of CuSO 4 effect on the C. polykrikoides, even other HAB species, have not been investigated. The present study investigated the transcriptional response of C. polykrikoides against CuSO 4 treatments, with the aim of providing certain molecular mechanism of CuSO 4 effect on the C. polykrikoides blooms. RNA-seq generated 173 million reads, which were further assembled to 191,212 contigs. 43.3 %, 33.9 %, and 15.6 % of contigs were annotated with NCBI NR, GO, and KEGG database, respectively. Transcriptomic analysis revealed 20.6 % differential expressed contigs, which grouped into 8 clusters according to K-means clustering analysis, responding to CuSO 4 ; 848 contigs were up-regulated and 746 contigs were down-regulated more than 2-fold changes from 12 h to 48 h exposure. KEGG pathway analysis of eukaryotic homologous genes revealed the differentially expressed genes (DEGs) were involved in diverse pathway; amongst, the genes involved in the translation, spliceosome, and/or signal transduction genes were highly regulated. Most of photosystem related genes were down-regulated and most of mitochondria related genes were up-regulated. In addition, the genes involved in the copper ion binding or transporting and antioxidant systems were identified. Measurement of chlorophyll fluorescence showed that photosynthesis was significantly inhibited by CuSO 4 exposure. This study reported the first transcriptome of the C. polykrikoides. The widely differential expressed photosystem genes suggested photosynthetic machinery were severely affected, and may further contribute to the cell death. Furthermore, gene translation and transcription processes may be disrupted, inhibiting cell growth and proliferation, and possibly accelerating cell death. However, antioxidant systems resistant to CuSO 4 caused stress; mitochondrion may compensate for photosynthesis efficiency decreasing caused energy deficiency. In addition, various signal transduction pathways may be involved in the CuSO 4 induced regulation network in the C. polykrikoides. These data provide the potential transcriptomic mechanism to explain the algicide CuSO 4 effect on the harmful dinoflagellate C. polykrikoides.
    Preview · Article · Dec 2016 · BMC Genomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: An ancestral trait of eukaryotic cells is the presence of mitochondria as an essential element for function and survival. Proper functioning of mitochondria depends on the import of nearly all proteins that is performed by complexes located in both mitochondrial membranes. The complexes have been proposed to contain subunits formed by proteins common to all eukaryotes and additional subunits regarded as lineage specific. Since Amoebozoa is poorly sampled for the complexes we investigated the outer membrane complexes, namely TOM, TOB/SAM and ERMES complexes, using available genome and transcriptome sequences, including transcriptomes assembled by us. The results indicate differences in the organization of the Amoebozoa TOM, TOB/SAM and ERMES complexes, with the TOM complex appearing to be the most diverse. This is reflected by differences in the number of involved subunits and in similarities to the cognate proteins of representatives from different supergroups of eukaryotes. The obtained results clearly demonstrate structural variability/diversity of these complexes in the Amoebozoa lineage and the reduction of their complexity as compared with the same complexes of model organisms.
    No preview · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, A r A r ; B. nigra, B ni B ni ; B. oleracea, C o C o ) and the derived allotetraploid species (i.e.: B. juncea, A j A j B j B j ; B. napus, A n A n C n C n ; B. carinata, B c B c C c C c ). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). A dense genetic linkage map of B. juncea was constructed using an F 2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing A j -A n than between A n -A r and A j -A r subgenome pairs. The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the A r , and A n C n genomes allowed us to compare the A subgenome structure of B. juncea (A j ) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (A r , A n and A j ) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus.
    Preview · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination.
    Full-text · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-editing is a tightly regulated, and essential cellular process for a properly functioning brain. Dysfunction of A-to-I RNA editing can have catastrophic effects, particularly in the central nervous system. Thus, understanding how the process of RNA-editing is regulated has important implications for human health. However, at present, very little is known about the regulation of editing across tissues, and individuals. Here we present an analysis of RNA-editing patterns from 9 different tissues harvested from a single mouse. For comparison, we also analyzed data for 5 of these tissues harvested from 15 additional animals. We find that tissue specificity of editing largely reflects differential expression of substrate transcripts across tissues. We identified a surprising enrichment of editing in intronic regions of brain transcripts, that could account for previously reported higher levels of editing in brain. There exists a small but remarkable amount of editing which is tissue-specific, despite comparable expression levels of the edit site across multiple tissues. Expression levels of editing enzymes and their isoforms can explain some, but not all of this variation. Together, these data suggest a complex regulation of the RNA-editing process beyond transcript expression levels.
    Preview · Article · Dec 2016 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.
    Preview · Article · Dec 2016 · BMC Genomics