BMC Evolutionary Biology (BMC EVOL BIOL)

Publisher: BioMed Central

Journal description

BMC Evolutionary Biology publishes original research articles in all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

Current impact factor: 3.37

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 3.368
2013 Impact Factor 3.407
2012 Impact Factor 3.285
2011 Impact Factor 3.521
2010 Impact Factor 3.702
2009 Impact Factor 4.294
2008 Impact Factor 4.05
2007 Impact Factor 4.091
2006 Impact Factor 4.455
2005 Impact Factor 4.447

Impact factor over time

Impact factor
Year

Additional details

5-year impact 3.85
Cited half-life 5.20
Immediacy index 0.50
Eigenfactor 0.04
Article influence 1.47
Website BMC Evolutionary Biology website
Other titles BMC evolutionary biology, BioMed Central evolutionary biology, Evolutionary biology
ISSN 1471-2148
OCLC 47657384
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent comparative studies of several taxa have found that within-species variation in sperm size decreases with increasing levels of sperm competition, suggesting that male-male gamete competition selects for an optimal sperm phenotype. Previous studies of intraspecific sperm length variation have all involved internal fertilizers where some other factors—e.g., sperm storage and sperm movement along the walls of the female’s reproductive tract—probably also influence and reduce sperm size variation. Thus external fertilizers, where those factors are absent, might be expected to exhibit even more variation when there is little or no sperm competition. To test that idea, we studied the sperm morphology of a North American chorus frog, the spring peeper (Pseudacris crucifer), a species in which males encounter little or no sperm competition. As expected, sperm size was highly variable in the spring peeper, largely due to variation in flagellum length within and among individual males, among populations and between mitochondrial lineages in southwestern Ontario. In addition, a large proportion of spermatozoa in all males was abnormal in such a way that the ability of abnormal spermatozoa to fertilize was probably compromised. There were no differences in the frequencies of abnormalities among populations or mitochondrial lineages. In the absence of sperm competition, we suggest that genetic drift has probably played a role in the generation of diversity in sperm morphology in this species, potentially resulting in the observed differences among populations. Such interpopulation difference in sperm morphology might be expected to increase the degree of reproductive isolation between populations even before other isolating mechanisms evolve.
    No preview · Article · Dec 2016 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a set of publications described flea fossils from Jurassic and Early Cretaceous geological strata in northeastern China, which were suggested to have parasitized feathered dinosaurs, pterosaurs, and early birds or mammals. In support of these fossils being fleas, a recent publication in BMC Evolutionary Biology described the extended abdomen of a female fossil specimen as due to blood feeding. We here comment on these findings, and conclude that the current interpretation of the evolutionary trajectory and ecology of these putative dinosaur fleas is based on appeal to probability, rather than evidence. Hence, their taxonomic positioning as fleas, or stem fleas, as well as their ecological classification as ectoparasites and blood feeders is not supported by currently available data.
    Preview · Article · Dec 2016 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles. With an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs. Chloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events.
    Full-text · Article · Dec 2016 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multicellularity evolved multiple times in eukaryotes. In all cases, this required an elaboration of the regulatory mechanisms controlling gene expression. Amongst the conserved eukaryotic transcription factor families, the basic leucine zipper (bZIP) superfamily is one of the most ancient and best characterised. This gene family plays a diversity of roles in the specification, differentiation and maintenance of cell types in plants and animals. bZIPs are also involved in stress responses and the regulation of cell proliferation in fungi, amoebozoans and heterokonts. Using 49 sequenced genomes from across the Eukaryota, we demonstrate that the bZIP superfamily has evolved from a single ancestral eukaryotic gene and undergone multiple independent expansions. bZIP family diversification is largely restricted to multicellular lineages, consistent with bZIPs contributing to the complex regulatory networks underlying differential and cell type-specific gene expression in these lineages. Analyses focused on the Metazoa suggest an elaborate bZIP network was in place in the most recent shared ancestor of all extant animals that was comprised of 11 of the 12 previously recognized families present in modern taxa. In addition this analysis identifies three bZIP families that appear to have been lost in mammals. Thus the ancestral metazoan and eumetazoan bZIP repertoire consists of 12 and 16 bZIPs, respectively. These diversified from 7 founder genes present in the holozoan ancestor. Our results reveal the ancestral opisthokont, holozoan and metazoan bZIP repertoire and provide insights into the progressive expansion and divergence of bZIPs in the five main eukaryotic kingdoms, suggesting that the early diversification of bZIPs in multiple eukaryotic lineages was a prerequisite for the evolution of complex multicellular organisms.
    Preview · Article · Dec 2016 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dogs [Canis lupus familiaris] were the first animal species to be domesticated and continue to occupy an important place in human societies. Recent studies have begun to reveal when and where dog domestication occurred. While much progress has been made in identifying the genetic basis of phenotypic differences between dog breeds we still know relatively little about the genetic changes underlying the phenotypes that differentiate all dogs from their wild progenitors, wolves [Canis lupus]. In particular, dogs generally show reduced aggression and fear towards humans compared to wolves. Therefore, selection for tameness was likely a necessary prerequisite for dog domestication. With the increasing availability of whole-genome sequence data it is possible to try and directly identify the genetic variants contributing to the phenotypic differences between dogs and wolves. We analyse the largest available database of genome-wide polymorphism data in a global sample of dogs 69 and wolves 7. We perform a scan to identify regions of the genome that are highly differentiated between dogs and wolves. We identify putatively functional genomic variants that are segregating or at high frequency [> = 0.75 Fst] for alternative alleles between dogs and wolves. A biological pathways analysis of the genes containing these variants suggests that there has been selection on the ‘adrenaline and noradrenaline biosynthesis pathway’, well known for its involvement in the fight-or-flight response. We identify 11 genes with putatively functional variants fixed for alternative alleles between dogs and wolves. The segregating variants in these genes are strong candidates for having been targets of selection during early dog domestication. We present the first genome-wide analysis of the different categories of putatively functional variants that are fixed or segregating at high frequency between a global sampling of dogs and wolves. We find evidence that selection has been strongest around non-synonymous variants. Strong selection in the initial stages of dog domestication appears to have occurred on multiple genes involved in the fight-or-flight response, particularly in the catecholamine synthesis pathway. Different alleles in some of these genes have been associated with behavioral differences between modern dog breeds, suggesting an important role for this pathway at multiple stages in the domestication process.
    Preview · Article · Dec 2016 · BMC Evolutionary Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inbreeding increases homozygosity and exposes deleterious recessive alleles, generally decreasing the fitness of inbred individuals. Interestingly, males and females are usually affected differently by inbreeding, though the more vulnerable sex depends on the species and trait measured. We used the soil-dwelling nematode Caenorhabditis remanei to examine sex-specific inbreeding depression across nine lineages, five levels of inbreeding, and hundreds of thousands of progeny. Female nematodes consistently suffered greater fitness losses than their male counterparts, especially at high levels of inbreeding. These results suggest that females experience stronger selection on genes contributing to reproductive traits. Inbreeding depression in males may be further reduced by sex chromosome hemizygosity, which affects the dominance of some mutations, as well as by the absence of sexual selection. Determining the relative contributions of sex-specific expression, genes on the sex chromosomes, and the environment they are filtered through—including opportunities for sexual selection—may explain the frequent though inconsistent records of sex differences in inbreeding depression, along with their implications for conservation and the evolution of mating systems.
    No preview · Article · Dec 2016 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Venomous organisms serve as wonderful systems to study the evolution and expression of genes that are directly associated with prey capture. To evaluate the relationship between venom gene expression and prey utilization, we examined these features among individuals of different ages of the venomous, worm-eating marine snail Conus ebraeus. We determined expression levels of six genes that encode venom components, used a DNA-based approach to evaluate the identity of prey items, and compared patterns of venom gene expression and dietary specialization. Results C. ebraeus exhibits two major shifts in diet with age—an initial transition from a relatively broad dietary breadth to a narrower one and then a return to a broader diet. Venom gene expression patterns also change with growth. All six venom genes are up-regulated in small individuals, down-regulated in medium-sized individuals, and then either up-regulated or continued to be down-regulated in members of the largest size class. Venom gene expression is not significantly different among individuals consuming different types of prey, but instead is coupled and slightly delayed with shifts in prey diversity. Conclusion These results imply that changes in gene expression contribute to intraspecific variation of venom composition and that gene expression patterns respond to changes in the diversity of food resources during different growth stages. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0592-5) contains supplementary material, which is available to authorized users.
    Full-text · Article · Dec 2016 · BMC Evolutionary Biology
  • Source

    Preview · Article · Dec 2016 · BMC Evolutionary Biology