Parasitology

Publisher: Cambridge University Press (CUP)

Current impact factor: 2.56

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.56
2013 Impact Factor 2.35
2012 Impact Factor 2.355
2011 Impact Factor 2.961
2010 Impact Factor 2.522
2009 Impact Factor 1.607
2008 Impact Factor 2.071
2007 Impact Factor 2.081
2006 Impact Factor 1.786
2005 Impact Factor 1.703
2004 Impact Factor 1.685
2003 Impact Factor 1.821
2002 Impact Factor 1.828
2001 Impact Factor 2.114
2000 Impact Factor 1.944
1999 Impact Factor 1.868
1998 Impact Factor 1.867
1997 Impact Factor 2.206

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.54
Cited half-life >10.0
Immediacy index 0.98
Eigenfactor 0.01
Article influence 0.76
ISSN 1469-8161
OCLC 166102937
Material type Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Cambridge University Press (CUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's Pre-print on author's personal website, departmental website, social media websites, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv
    • Author's post-print on author's personal website on acceptance of publication
    • Author's post-print on departmental website, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv, after a 6 months embargo
    • Publisher's version/PDF cannot be used
    • Published abstract may be deposited
    • Pre-print to record acceptance for publication
    • Publisher copyright and source must be acknowledged with set statement
    • Must link to publisher version
    • Publisher last reviewed on 07/10/2014
    • This policy is an exception to the default policies of 'Cambridge University Press (CUP)'
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, One Health has attracted considerable attention from researchers and policymakers. The concept argues that the fields of human, animal and environmental health ought to be more closely integrated. Amid a flurry of conferences, projects and publications, there has been substantial debate over what exactly One Health is and should be. This review summarizes the main trends in this emerging discussion, highlighting the fault lines between different perspectives on One Health. Some have shown that One Health's call to synthesize knowledge from different disciplines can lead to better interventions. Others, however, argue that One Health's challenge to existing practice must go further, and set out a vision that foregrounds the social and economic drivers of disease. Meanwhile, recent examples of One Health in practice highlight the potential but also the challenges of institutionalizing cooperation. We also discuss the promise and pitfalls of using complexity theory to tackle multifaceted problems, and consider how the One Health concept has been brought to bear on other issues, such as emerging new technologies. Ultimately, One Health is an important and worthwhile goal, and requires a debate that clarifies both the competing uses and the political nature of the project.
    No preview · Article · Jan 2016 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.
    No preview · Article · Jan 2016 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
    No preview · Article · Jan 2016 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rational search of novel bioactive molecules against pathogens with immunomodulatory activity is presently one of the most significant approaches to discover and design new therapeutic agents for effective control of infectious diseases, such as the infection caused by Leishmania parasites. In the present study, we evaluated the therapeutic efficacy of the recently characterized immunomodulatory compound 11α,19β-dihydroxy-7-acetoxy-7-deoxoichangin, a seco-limonoid derived from the bark of Raputia heptaphylla (Pittier) using: (1) peritoneal macrophages and (2) Mesocricetus auratus hamsters infected with Leishmania (V.) panamensis and Leishmania (L.) amazonensis. We observed the ability of this seco-limonoid to induce the effective control of the parasite either in vitro [determining an effective concentration 50 (EC50) of 59 µ m at the infection model] and in vivo (inducing clinical improvement or even cure in infected animals treated compared with the groups of animals treated with vehicle solution or meglumine antimoniate).
    No preview · Article · Dec 2015 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ticks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.
    No preview · Article · Dec 2015 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human lymphatic filariasis (LF) is a major cause of disability globally. The success of global elimination programmes for LF depends upon effectiveness of tools for diagnosis and treatment. In this study on stage-specific antigen detection in brugian filariasis, L3, adult worm (AW) and microfilarial antigenaemia were detected in around 90-95% of microfilariae carriers (MF group), 50-70% of adenolymphangitis (ADL) patients, 10-25% of chronic pathology (CP) patients and 10-15% of endemic normal (EN) controls. The sensitivity of the circulating filarial antigen (CFA) detection in serum samples from MF group was up to 95%. In sera from ADL patients, unexpectedly, less antigen reactivity was observed. In CP group all the CFA positive individuals were from CP grade I and II only and none from grade III or IV, suggesting that with chronicity the AWs lose fecundity and start to disintegrate and die. Amongst EN subject, 10-15% had CFA indicating that few of them harbour filarial AWs, thus they might not be truly immune as has been conventionally believed. The specificity for antigen detection was 100% when tested with sera from various other protozoan and non-filarial helminthic infections.
    No preview · Article · Dec 2015 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modified agglutination test (MAT) is one of the most commonly used tests for the detection of antibodies to Toxoplasma gondii in animal and human sera. The objective of the present study was to evaluate the diagnostic accuracy of the MAT and bioassay in free-range/backyard (FR) chickens (Gallus domesticus). Previously-published T. gondii test results from 2066 chickens from 19 countries were compiled for the present study. The frequency of isolation of T. gondii increased for MAT titres between 1:5 and 1:160, and ranged from 61 to 75% for antibody titres of 1:160, 1:320, and ⩾1:640. Twenty-three cats fed pooled hearts from a total of 802 FR seronegative (MAT, <1:5) chickens from several countries did not excrete oocysts, indicating a high negative predictive value of MAT because FR chickens would have been exposed to many microbes; cats are the most sensitive indicators of T. gondii infection in tissues and can excrete millions of oocysts after ingesting even a few bradyzoites. Of the 29 cats in this study, six cats, fed hearts pooled from 15-122 FR chickens, excreted oocysts; but these identifications were likely related to misidentification or prozone. Results of the present study support the validity of MAT for the detection of T. gondii infection in chickens.
    No preview · Article · Dec 2015 · Parasitology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoenolpyruvate carboxykinase (PEPCK) involved in gluconeogenesis in higher vertebrates opposedly plays a significant role in glucose oxidation of the cestode parasite, Raillietina echinobothrida. Considering the importance of the enzyme in the parasite and lack of its structural details, there exists an urgent need for understanding the molecular details and development of possible modulators. Hence, in this study, PEPCK gene was obtained using rapid amplification of cDNA ends, and various biocomputational analyses were performed. Homology model of the enzyme was generated, and docking simulations were executed with its substrate, co-factor, and modulators. Computer hits were generated after structure- and ligand-based screening using Discovery Studio 4.1 software; the predicted interactions were compared with those of the existing structural information of PEPCK. In order to evaluate the docking simulation results of the modulators, PEPCK gene was cloned and the overexpressed protein was purified for kinetic studies. Enzyme kinetics and in vitro studies revealed that out of the modulators tested, tetrahydropalmatine (THP) inhibited the enzyme with lowest inhibition constant value of 93 nM. Taking the results together, we conclude that THP could be a potential inhibitor for PEPCK in the parasite.
    No preview · Article · Nov 2015 · Parasitology