Annales Geophysicae (Ann Geophys)

Publisher: European Geophysical Society, European Geosciences Union

Journal description

Prior to 2001 this journal was published by Springer. Annales Geophysicae (ANGEO) is an international, multi- and inter- disciplinary scientific journal for the publication of original articles and of short communications (Letters) for the sciences of the Sun-Earth system, including the science of Space Weather, the Solar-Terrestrial plasma physics, and the Earth's atmosphere and oceans.

Current impact factor: 1.71

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.709
2013 Impact Factor 1.676
2012 Impact Factor 1.518
2011 Impact Factor 1.842
2010 Impact Factor 1.62
2009 Impact Factor 1.648
2008 Impact Factor 1.66
2007 Impact Factor 1.427
2006 Impact Factor 1.293
2005 Impact Factor 1.45
2004 Impact Factor 1.61
2003 Impact Factor 1.031
2002 Impact Factor 1.189
2001 Impact Factor 1.199
2000 Impact Factor 1.76
1999 Impact Factor 1.727
1998 Impact Factor 1.423
1997 Impact Factor 1.245

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.74
Cited half-life 8.30
Immediacy index 0.40
Eigenfactor 0.01
Article influence 0.80
Website Annales Geophysicae (1988) website
Other titles Annales geophysicae (Montrouge, France: 1988: Online), Annales geophysicae
ISSN 1432-0576
OCLC 41977993
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

European Geosciences Union

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors retain copyright
    • Creative Commons Attribution License 3.0
    • Eligible UK authors may deposit in OpenDepot
    • Publisher's version/PDF may be used
    • All titles are open access journals
  • Classification
    green

Publications in this journal

  • M. M. Amrutha · V. Sanil Kumar · J. Singh
    [Show abstract] [Hide abstract]
    ABSTRACT: A unique feature observed in the tropical and subtropical coastal area is the diurnal sea-breeze/land-breeze cycle. We examined the nearshore waves at 5 and 15 m water depth during the active sea/land breeze period (January–April) in the year 2015 based on the data measured using the waverider buoys moored in the eastern Arabian sea off Vengurla, central west coast of India. Temporal variability of diurnal wave response is examined. Numerical model Delft3D is used to study the nearshore wave transformation. The wave height increased due to the sea breeze and reached its peak at ∼ 13:00 UTC at 15 m water depth, whereas the peak significant wave height is at 12:00 UTC at 5 m water depth. Due to the influence of the land/sea breeze system, the range of the peak wave period in 1 day varied up to 8 s. Reduction in the wave height of wind-sea is around 20 % and that of the swell is around 10 % from 15 to 5 m water depth.
    No preview · Article · Feb 2016 · Annales Geophysicae
  • [Show abstract] [Hide abstract]
    ABSTRACT: We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20–27 km altitude. This height range does not include a sharp jump in the background Brunt–Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90–150° E, where the topography was more complicated, and (b) 170–230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30–50° N in region (a), and 50–70° N in region (b), which was related to the topography. At 30–50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the theoretical model value, assuming saturated GWs, became larger in the equatorial region and over mountainous regions.
    No preview · Article · Feb 2016 · Annales Geophysicae
  • [Show abstract] [Hide abstract]
    ABSTRACT: The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.
    No preview · Article · Feb 2016 · Annales Geophysicae
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we report on four events detected using the Jicamarca Radio Observatory (JRO) over an 18-year period, in which huge convective ionospheric storms (CISs) occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.
    No preview · Article · Feb 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: So-called pickup electric currents, associated with the ionization of neutral particles in the presence of a flowing plasma, are conventionally described as produced directly by differential displacement of ions and electrons as the result of acceleration and gyromotion under the action of the electric field E = −V × B∕c. This is not the appropriate physical description for the case when the electron inertial length of the background plasma is small in comparison with the spatial scale of the system. The pickup process in this case does not directly produce a current, except for a small transient on the electron-gyroperiod timescale, which then decays exponentially at the ionization (momentum-loading) rate, as can be shown by an explicit solution of the equations. Rather, the plasma is first slowed down by the momentum loading; the spatially inhomogeneous velocity change then leads to a perturbation of the magnetic field, and the curl of the perturbed field is the current. The timescale for the development of the pickup current is not the ion gyroperiod (as the conventional description might suggest) but rather the Alfvén wave travel time over the spatial scale of the inhomogeneity.
    Full-text · Article · Feb 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a two-dimensional theoretical model to study the formation process of multiple layers of small ice particles in the polar summer mesosphere as measured by rockets and associated with polar mesosphere summer echoes (PMSE). The proposed mechanism primarily takes into account the transport processes induced by gravity waves through collision coupling between the neutral atmosphere and the ice particles. Numerical solutions of the model indicate that the dynamic influence of wind variation induced by gravity waves can make a significant contribution to the vertical and horizontal transport of ice particles and ultimately transform them into thin multiple layers. Additionally, the pattern of the multiple layers at least partially depends on the vertical wavelength of the gravity wave, the ice particle size and the wind velocity. The results presented in this paper will be helpful to better understand the occurrence of multiple layers of PMSE as well as its variation process.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX) campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E) during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa meridional wind (v200 hPa) anomalies from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis shows distinct Rossby-wave-like structures over a high-altitude site in the central Himalayan region. Furthermore, the spectral analysis of global v200 hPa anomalies indicates the Rossby waves are characterized by zonal wave number 6. The amplification of the Rossby wave packets over the site leads to persistent subtropical jet stream (STJ) patterns, which further affects the surface weather conditions. The propagating Rossby waves in the upper troposphere along with the undulations in the STJ create convergence and divergence regions in the mid-troposphere. Therefore, the surface meteorological parameters such as the relative humidity, wind speeds, and temperature are synchronized with the phase of the propagating Rossby waves. Moreover, the present study finds important implications for medium-range forecasting through the upper-level Rossby waves over the study region.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two consecutive mesospheric bores were observed simultaneously by two all-sky cameras on 19 December 2006. The observations were carried out in the northeast of Brazil at two different stations: São João do Cariri (36.5° W, 7.4° S) and Monteiro (37.1° W, 7.9° S), which are by about 85 km apart. The mesospheric bores were observed within an interval of ∼ 3 h in the NIR OH and OI557.7 nm airglow emissions. Both bores propagated to the east and showed similar characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region, while the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region. This is the first paper to report events like these, called twin mesospheric bores. The background of the atmosphere during the occurrence of these events was studied by considering the temperature profiles from the TIMED/SABER satellite and wind from a meteor radar.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical processes in the ionosphere. In this paper, we introduce a simultaneous multiplicative column-normalized method (SMART) for electron density reconstruction. Further, SMART+ is developed by combining SMART with a successive correction method. In this way, a balancing between the measurements of intersected and not intersected voxels is realised. The methods are compared with the well-known algebraic reconstruction techniques ART and SART. All the four methods are applied to reconstruct the 3-D electron density distribution by ingestion of ground-based GNSS TEC data into the NeQuick model. The comparative case study is implemented over Europe during two periods of the year 2011 covering quiet to disturbed ionospheric conditions. In particular, the performance of the methods is compared in terms of the convergence behaviour and the capability to reproduce sTEC and electron density profiles. For this purpose, independent sTEC data of four IGS stations and electron density profiles of four ionosonde stations are taken as reference. The results indicate that SMART significantly reduces the number of iterations necessary to achieve a predefined accuracy level. Further, SMART+ decreases the median of the absolute sTEC error up to 15, 22, 46 and 67 % compared to SMART, SART, ART and NeQuick respectively.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method of mapping electric fields along geomagnetic field lines is applied to the IGRF (International Geomagnetic Reference Field) model. The method involves integrating additional sets of first order differential equations simultaneously with those for tracing a magnetic field line. These provide a measure of the rate of change of the separation of two magnetic field lines separated by an infinitesimal amount. From the results of the integration Faraday's law is used to compute the electric field as a function of position along the field line. Examples of computations from a software package developed to implement the method are presented. This is expected to be of use in conjugate studies of magnetospheric phenomena such as SuperDARN (Super Dual Auroral Radar) observations of convection in conjugate hemispheres, or comparison of satellite electric field observations with fields measured in the ionosphere.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed 100 fps stereoscopic imaging of aurora for the first time. Two identical sCMOS cameras equipped with narrow field-of-view lenses (15° by 15°) were directed at magnetic zenith with the north–south base distance of 8.1 km. Here we show the best example that a rapidly pulsating diffuse patch and a streaming discrete arc were observed at the same time with different parallaxes, and the emission altitudes were estimated as 85–95 km and > 100 km, respectively. The estimated emission altitudes are consistent with those estimated in previous studies, and it is suggested that high-speed stereoscopy is useful to directly measure the emission altitudes of various types of rapidly varying aurora. It is also found that variation of emission altitude is gradual (e.g., 10 km increase over 5 s) for pulsating patches and is fast (e.g., 10 km increase within 0.5 s) for streaming arcs.
    Full-text · Article · Jan 2016 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have derived ozone and temperature responses to solar variability over a solar cycle, from June 2002 through June 2014, 50 to 100 km, 48° S to 48° N, based on data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics (TIMED) satellite. Results with this extent of coverage in the mesosphere and lower thermosphere have not been available previously. A multiple regression is applied to obtain responses as a function of the solar 10.7 cm flux (solar flux units, sfu). Positive responses mean that they are larger at solar maximum than at solar minimum of the solar cycle. From ∼ 80 to 100 km, both ozone and temperature responses are positive for all latitudes and are larger than those at lower altitudes. From ∼ 80 to 100 km, ozone responses can exceed 10 % (100 sfu)−1, and temperature responses can approach 4 °K. From 50 to ∼ 80 km, the ozone responses at low latitudes ( ∼ ±35°) are mostly negative and can approach ∼ negative 3 % (100 sfu)−1. However, they are mostly positive at midlatitudes in this region and can approach ∼ 2 % (100 sfu)−1. In contrast to ozone, from ∼ 50 to 80 km, the temperature responses at low latitudes remain positive, with values up to ∼ 2.5 K (100 sfu)−1, but are weakly negative at midlatitudes. Consequently, there is a systematic and robust relation between the phases of the ozone and temperature responses. They are positively correlated (in phase) from ∼ 80 to 100 km for all latitudes and negatively correlated (out of phase) from ∼ 50 to 80 km, also for all latitudes. The negative correlation from 50 to 80 km is maintained even though the ozone and temperature responses can change signs as a function of altitude and latitude, because the corresponding temperature responses change signs in step with ozone. This is consistent with the idea that dynamics have the larger influence between ∼ 80 and 100 km, while photochemistry is more in control from ∼ 50 to 75 km. The correlation coefficients between the solar 10.7 cm flux and the ozone and temperature themselves from 2012 to 2014 are positive (negative) in regions where the responses are positive (negative). This supports our results since the correlations are independent of the multiple regression used to derive the responses. We also compare with previous results.
    Full-text · Article · Jan 2016 · Annales Geophysicae