Brain Behavior and Evolution (Brain Behav Evol)

Publisher: Karger

Journal description

Brain, Behavior and Evolutioní is a journal with a loyal following, high standards, and a unique identity as the main outlet for the continuing scientific discourse on the structure, function and evolution of the nervous system. Our goal for the Journal is to embrace the whole universe of disciplines from neuroscience to behavioral ecology that contribute to understanding nervous system evolution, and to encourage the application of cutting-edge techniques from all of them to advance this understanding. The journal publishes comparative neurobiological studies that focus on the morphology, physiology, and histochemistry of various neural structures, as well as aspects of psychology, ecology, and ethology in both vertebrates and invertebrates as they relate to nervous system structure, function, and evolution. In addition to original research reports, the journal contains review and theory papers. One issue each year is devoted to the proceedings of the annual Karger Workshop. This issue includes a series of related review papers on a current topic in the area of comparative neurobiology and the evolution of the brain and behavior.

Current impact factor: 2.01

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.013
2013 Impact Factor 4.288
2012 Impact Factor 2.885
2011 Impact Factor 2.215
2010 Impact Factor 1.968
2009 Impact Factor 2.733
2008 Impact Factor 2.714
2007 Impact Factor 1.453
2006 Impact Factor 2.195
2005 Impact Factor 1.986
2004 Impact Factor 1.954
2003 Impact Factor 1.543
2002 Impact Factor 1.618
2001 Impact Factor 1.635
2000 Impact Factor 1.381
1999 Impact Factor 1.65
1998 Impact Factor 1.559
1997 Impact Factor 1.786
1996 Impact Factor 1.49
1995 Impact Factor 1.577
1994 Impact Factor 1.417
1993 Impact Factor 1.959
1992 Impact Factor 1.549

Impact factor over time

Impact factor

Additional details

5-year impact 2.42
Cited half-life >10.0
Immediacy index 0.49
Eigenfactor 0.00
Article influence 0.75
Website Brain, Behavior and Evolution website
Other titles Brain, behavior and evolution (Online)
ISSN 1421-9743
OCLC 44640054
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author's server or institutional server
    • Server must be non-commercial
    • Publisher's version/PDF cannot be used
    • Publisher copyright and source must be acknowledged
    • Must link to publisher version
  • Classification

Publications in this journal

  • No preview · Article · Jan 2016 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: Species that use communication sounds to coordinate social and reproductive behavior must be able to distinguish vocalizations from nonvocal sounds as well as to identify individual vocalization types. In this study we sought to identify the neural localization of the processes involved and the temporal order in which they occur in an anuran species, the music frog Babina daunchina. To do this we measured telencephalic and mesencephalic event-related potentials (ERPs) elicited by synthesized white noise (WN), highly sexually attractive (HSA) calls produced by males from inside nests and male calls of low sexual attractiveness (LSA) produced outside of nests. Each stimulus possessed similar temporal structures. The results showed the following: (1) the amplitudes of the first negative ERP component (N1) at ∼100 ms differed significantly between WN and conspecific calls but not between HSA and LSA calls, indicating that discrimination between conspecific calls and nonvocal sounds occurs in ∼100 ms, (2) the amplitudes of the second positive ERP component (P2) at ∼200 ms in the difference waves between HSA calls and WN were significantly higher than between LSA calls and WN in the right telencephalon, implying that call characteristic identification occurs in ∼200 ms and (3) WN evoked a larger third positive ERP component (P3) at ∼300 ms than conspecific calls, suggesting the frogs had classified the conspecific calls into one category and perceived WN as novel. Thus, both the detection of sounds and the identification of call characteristics are accomplished quickly in a specific temporal order, as reflected by ERP components. In addition, the most dynamic ERP patterns appeared in the left mesencephalon and the right telencephalon, indicating the two brain regions might play key roles in anuran vocal communication.
    No preview · Article · Nov 2015 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using high-speed video cinematography, we characterized kinematically the spontaneous tail movements made by the appendicularian urochordate Oikopleura dioica. Videos of young adult (1-day-old) animals discriminated 4 cardinal movement types: bending, nodding, swimming and filtering, each of which had a characteristic signature including cyclicity, event or cycle duration, cycle frequency, cycle frequency variation, laterality, tail muscle segment coordination and episode duration. Bending exhibited a more common, unilateral form (single bending) and a rarer, bilateral form (alternating bending). Videos of developing animals showed that bending and swimming appeared in rudimentary form starting just after hatching and exhibited developmental changes in movement excursion, duration and frequency, whereas nodding and filtering appeared in the fully mature form in young adults at the time of first house production. More complex behaviors were associated with inflating, entering and exiting the house. We also assessed the influence of descending inputs by separating the tail (which contains all muscles and most likely the neural circuits that generate most motor outputs) from the head. Isolated tails spontaneously generated either bending or swimming movements in abnormally protracted episodes. This together with other observations of interactions between bending and swimming behaviors indicates the presence of several types of descending inputs that regulate the activity of the pattern generating circuitry in the tail nervous system.
    No preview · Article · Oct 2015 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite centuries of interest in electric eels, few studies have investigated the mechanism of the eel's attack. Here, I review and extend recent findings that show eel electric high-voltage discharges activate prey motor neuron efferents. This mechanism allows electric eels to remotely control their targets using two different strategies. When nearby prey have been detected, eels emit a high-voltage volley that causes whole-body tetanus in the target, freezing all voluntary movement and allowing the eel to capture the prey with a suction feeding strike. When hunting for cryptic prey, eels emit doublets and triplets, inducing whole-body twitch in prey, which in turn elicits an immediate eel attack with a full volley and suction feeding strike. Thus, by using their modified muscles (electrocytes) as amplifiers of their own motor efferents, eel's motor neurons remotely activate prey motor neurons to cause movement (twitch and escape) or immobilization (tetanus) facilitating prey detection and capture, respectively. These results explain reports that human movement is 'frozen' by eel discharges and shows the mechanism to resemble a law-enforcement Taser.
    No preview · Article · Sep 2015 · Brain Behavior and Evolution

  • No preview · Article · Sep 2015 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apteronotus albifrons (Gymnotiformes, Apteronotidae) is well known to have a sophisticated active electrosense system and is commonly described as having poor vision or being almost blind. However, some studies on this species suggest that the visual system may have a role in sensing objects in the environment. In this study, we investigated the visual capabilities of A. albifrons by focusing on eye morphology and retinal ganglion cell distribution. The eyes were almost embedded below the body surface and pigmented dermal tissue covered the peripheral regions of the pupil, limiting the direction of incoming light. The lens was remarkably flattened compared to the almost spherical lenses of other teleosts. The layered structure of the retina was not well delineated and ganglion cells did not form a continuous sheet of cell bodies. A newly modified retinal flat-mount method was applied to reveal the ganglion cell distribution. This method involved postembedding removal of the pigment epithelium of the retina for easier visualization of ganglion cells in small and/or fragile retinal tissues. We found that ganglion cell densities were relatively high in the periphery and highest in the nasal and temporal retina, although specialization was not so high (approx. 3:1) with regard to the medionasal or mediotemporal axis. The estimated highest possible spatial resolving power was around 0.57 and 0.54 cycles/degree in the nasal and temporal retina, respectively, confirming the lower importance of the visual sense in this species. However, considering the hunting nature of A. albifrons, the relatively high acuity of the caudal visual field in combination with electrolocation may well be used to locate prey situated close to the side of the body.
    No preview · Article · Sep 2015 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mid- to high-latitude songbirds, seasonal reproduction is stimulated by increasing day length accompanied by elevated plasma sex steroid levels, increased singing, and growth of the song control nuclei (SCN). Plasticity of the SCN and song behavior are primarily mediated by testosterone (T) and its metabolites in most species studied thus far. However, the majority of bird species are tropical and have less pronounced seasonal reproductive cycles. We have previously documented that equatorial rufous-collared sparrows (Zonotrichia capensis) exhibit seasonal neuroplasticity in the SCN. Manipulating T in these birds, however, did not alter singing behavior. In the current study, we investigated whether T mediates plasticity of the SCN in a similar manner to temperate songbirds. In the first experiment, we treated captive male birds with T or blank implants during the nonbreeding season. In a second experiment, we treated captive male birds with either blank implants, T-filled implants, T with flutamide (FLU; an androgen receptor antagonist) or T with FLU and 1,4,6-androstatriene-3,17-dione (ATD; an estrogen synthesis inhibitor) during the breeding season. In both experiments, the volumes of the brain areas high vocal center (HVC), Area X, and robust nucleus of the arcopallium (RA) were measured along with singing behavior. In summary, T stimulated growth of HVC and RA, and the combined effect of FLU and ATD reversed this effect in HVC. Area X was not affected by T treatment in either experiment. Neither T-treated birds nor controls sang in captivity during either experiment. Together, these data indicate that T mediates seasonal changes in the HVC and RA of both tropical and higher- latitude bird species even if the environmental signals differ. However, unlike most higher-latitude songbirds, we found no evidence that motivation to sing or growth of Area X are stimulated by T under captive conditions.
    No preview · Article · Sep 2015 · Brain Behavior and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dorsal thalamus is a region of the diencephalon that relays sensory and motor information between areas of the brain stem and the telencephalon. Although a dorsal thalamic region is recognized in all vertebrates and believed to be homologous, little is known about how the regions within it evolved and whether some or all regions within the dorsal thalamus are homologous among different vertebrate species. To characterize the gradients and patterns of neurogenesis of the avian dorsal thalamus, a single application of a low dose of bromodeoxyuridine (BrdU) was delivered to each chick between embryonic day (E)3 and E8 (stages 21 and 34), and chicks were followed up to E8 or E10 (stage 34 or 36). Comparisons of anti-BrdU labeling patterns across the different injection days suggest that nearly all dorsal thalamic neurons are born early in chick embryogenesis, between E3 and E8. Furthermore, neurons in the lateral, dorsal, and posterior parts of the dorsal thalamus are generally born earlier than those in the medial, ventral, and anterior parts. Analyses of the birth dates for nine regions show that the general pattern of neurogenesis in the avian dorsal thalamus resembles that of homologous regions within the rodent thalamus, with the exception of the auditory region, the nucleus ovoidalis, which is born later than the mammalian auditory medial geniculate nucleus. The similar pattern of neurogenesis in birds and mammals may represent a highly conserved developmental pattern that was present in the common ancestor of living birds and mammals, or may represent independently derived states. Additional studies in reptiles and amphibians are needed to distinguish between these evolutionary histories. © 2015 S. Karger AG, Basel.
    No preview · Article · Aug 2015 · Brain Behavior and Evolution