Pharmaceutical Biology (PHARM BIOL)

Publisher: Informa Healthcare

Journal description

As blockbuster drugs become harder to develop by chemical synthesis, pharmacological science is looking increasingly to natural sources for clues. Pharmaceutical Biology publishes manuscripts describing the discovery, methods for discovery, description, analysis characterization, and production/isolation of biologically-active chemicals or other substances, drugs, pharmaceutical products, or preparations utilized in systems of traditional medicine. An essential publication in any modern pharmacology reference center.

Current impact factor: 1.24

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.241
2013 Impact Factor 1.337
2012 Impact Factor 1.206
2011 Impact Factor 0.878
2010 Impact Factor 0.638
2009 Impact Factor 0.672
2008 Impact Factor 0.488
2007 Impact Factor 0.364
2006 Impact Factor 0.397
2005 Impact Factor 0.394
2004 Impact Factor 0.441
2003 Impact Factor 0.413
2002 Impact Factor 0.262
2001 Impact Factor 0.312
2000 Impact Factor 0.132
1999 Impact Factor 0.164
1998 Impact Factor

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.19
Cited half-life 5.20
Immediacy index 0.36
Eigenfactor 0.00
Article influence 0.23
Website Pharmaceutical Biology website
Other titles Pharmaceutical biology
ISSN 1388-0209
OCLC 39631629
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Informa Healthcare

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • On author's personal website or institution website
    • Publisher copyright and source must be acknowledged
    • Non-commercial
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • NIH funded authors may post articles to PubMed Central for release 12 months after publication
    • Wellcome Trust authors may deposit in Europe PMC after 6 months
  • Classification
    yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Context The root of Helicteres angustifolia L. (Sterculiaceae) has been used as folk herbal drug to treat cancer, bacterial infections, inflammatory, and flu in China. However, there is no report on its antidiabetic activity. Objective This study evaluates the antidiabetic activity of ethanol extract from H. angustifolia root. Materials and methods The promoting effect of H. angustifolia root ethanol extract (25, 50, and 100 μg/mL) on glucose uptake was evaluated using HepG2 cell, differentiated C2C12 myotubes, and differentiated 3T3-L1 adipocytes. The antidiabetic activity of the extract was assessed in vivo using STZ-induced diabetic rats by orally administration of the extract (200 and 400 mg/kg b.w.) once per day for 28 d. Blood glucose, TG, TC, TP, HDL-C, UA, BUN, AST, ALT, insulin, and HOMA-IR were analyzed. Results The results showed that the extract increased glucose uptake in C2C12 myotubes and 3T3-L1 adipocytes with an IC50 value of 79.95 and 135.96 μg/mL, respectively. And about 12%, 19%, and 10% (p < 0.05) in HepG2 cells when compared with the control at the concentration of 25, 50, and 100 μg/mL, respectively. After 28 days' treatment with the extract, significant reduction was observed in blood glucose, HOMA-IR, TC, TG, UA, BUN, AST, and ALT levels, while the levels of TP and HDL cholesterol increased. Discussion and conclusion These results suggest that H. angustifolia root ethanol extract possess potent antidiabetic activity, which is the first report on antidiabetic activity of this plant.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context The underground edible tuber of Dioscorea alata L. (Dioscoreaceae) is a functional food with high nutritive value and therapeutic potential. The tuber is known to possess anti-inflammatory properties in traditional medicine. Objective The present study explores the anti-inflammatory activity and standardisation of D. alata tuber hydromethanol extract. Materials and methods Hydromethanol extract (70%) of D. alata tuber was chemically characterised using HPLC and GC-MS techniques. Murine lymphocytes were cultured for 48 h with six different concentrations (0-80 μg/mL) of the extract. The expression of nitric oxide (NO), TNF-α, COX-1, COX-2, and PGE2 were evaluated using colorimetric and ELISA methods. Results Dioscorea alata extract inhibited the expression of NO and TNF-α with an IC50 value of 134.51 ± 6.75 and 113.30 ± 7.44 μg/mL, respectively. The IC50 values for inhibition of total COX, COX-1, COX-2 activities and PGE2 level were 41.96 ± 3.07, 141.41 ± 8.99, 32.50 ± 1.69, and 186.34 ± 15.36 μg/mL, respectively. Inhibition of PGE2 level and COX-2 activity was positively correlated (R(2) = 0.9393). Gallic acid (GA), 4-hydroxy benzoic acid (4HBA), syringic acid (SYA), p-coumaric acid (PCA), and myricetin (MY) were identified and quantified using HPLC. GC-MS analysis revealed the presence of 13 different phytocompounds such as hexadecanoic acid, methyl stearate, cinnamyl cinnamate, and squalene. Conclusion The D. alata extract significantly down-regulated the pro-inflammatory signals in a gradual manner compared with control (0 μg/mL). Different bioactive phytocompounds individually possessing anti-inflammatory activities contributed to the overall bioactivity of the D. alata tuber extract.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Dioscorea bulbifera L. (Dioscoreaceae) has been used in a traditional Thai longevity medicine preparation. Isolation of inhibitors from natural products is a potential source for continuous development of new HIV-1 integrase (IN) inhibitors. Objective The objective of this study is to isolate the compounds and evaluate their anti-HIV-1 IN activity, as well as to predict the potential interactions of the compounds with an IN. Materials and methods The ethyl acetate and water fractions (1-100 μg/mL) of Dioscorea bulbifera bulbils were isolated and tested for their anti-HIV-1 IN activity using the multiplate integration assay (MIA). The interactions of the active compounds with IN were investigated using a molecular docking method. Results and discussions The ethyl acetate and water fractions of Dioscorea bulbifera bulbils afforded seven compounds. Among these, allantoin (1), 2,4,3',5'-tetrahydroxybibenzyl (2), and 5,7,4'-trihydroxy-2-styrylchromone (5) were isolated for the first time from this plant. Myricetin (4) exhibited the most potent activity with an IC50 value of 3.15 μM, followed by 2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene (3, IC50 value= 14.20 μM), quercetin-3-O-β-d-glucopyranoside (6, IC50 value = 19.39 μM) and quercetin-3-O-β-d-galactopyranoside (7, IC50 value = 21.80 μM). Potential interactions of the active compounds (3, 4, 6, and 7) with the IN active site were additionally investigated. Compound 4 showed the best binding affinity to IN and formed strong interactions with various amino acid residues. These compounds interacted with Asp64, Thr66, His67, Glu92, Asp116, Gln148, Glu152, Asn155, and Lys159, which are involved in both the 3'-processing and strand transfer reactions of IN. In particular, galloyl, catechol, and sugar moieties were successful inhibitors for HIV-1 IN.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Ethnopharmacological studies have demonstrated that plants of the Combretum genus presented antidiabetic activity, including Combretum lanceolatum Pohl ex Eichler (Combretaceae). Objective This study investigated the hepatic mechanisms of action of C. lanceolatum flowers ethanol extract (ClEtOH) related to its antihyperglycaemic effect in streptozotocin-diabetic rats. Materials and methods Male Wistar rats were divided into normal (N) and diabetic control (DC) rats treated with vehicle (water); diabetic rats treated with 500 mg/kg metformin (DMet) or 500 mg/kg ClEtOH (DT500). After 21 d of treatment, hepatic glucose and urea production were investigated through in situ perfused liver with l-glutamine. Changes in the phosphoenolpyruvate carboxykinase (PEPCK) levels and in the activation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-signalling intermediates were also investigated. Results Similar to DMet, DT500 rats showed a reduction in the rates of hepatic production of glucose (46%) and urea (22%) in comparison with DC. This reduction was accompanied by a reduction in the PEPCK levels in liver of DT500 (28%) and DMet (43%) when compared with DC. AMPK phosphorylation levels were higher in the liver of DT500 (17%) and DMet (16%) rats. The basal AKT phosphorylation levels were increased in liver of DT500 rats, without differences in the insulin-stimulated AKT phosphorylation and in the insulin receptor levels between DC and DT500 rats. Discussion and conclusion The antidiabetic activity of ClEtOH can be attributed, at least in part, to inhibition of hepatic gluconeogenesis, probably due to the activation of both AMPK and AKT effectors and reduction in the PEPCK levels.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Despite several pharmacological studies of volatile oils of Angelica sinensis (Oliv.) Diels (Umbelliferae) (VOAS), its anti-inflammatory mechanism remains unknown. Objective The study investigates the effects of VOAS on the lipopolysaccharide (LPS)-induced acute inflammation rat model and analyzes its possible anti-inflammatory mechanisms. Materials and methods Fourty rats were randomly divided into the control, model, VOAS and dexamethasone (Dex) groups. The VOAS and Dex groups were given VOAS (0.176 mL/kg) and Dex (40 μg/kg), respectively. Rats in all groups except the control group were intraperitoneally injected with LPS (100 μg/kg), their exterior behaviour and liver pathological changes were observed, and the level of white blood cell (WBC), the number of neutrophils (NE)%, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (ALP), tumour necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, IL-10, histamine (HIS), 5-hydroxytryptamine (5-HT), nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) were detected. Results Compared with the model group, VOAS and Dex significantly accelerated the recovery of the exterior behaviour, the liver pathological changes of rats, and increased the level of IL-10, but decreased the level of WBC, NE%, GOT, GPT, ALP, TNF-α, IL-1β, IL-6, HIS, 5-HT, NO, PGE2, iNOS and COX-2 (p < 0.05). Conclusion VOAS exhibits anti-inflammatory and liver protection effects by inhibiting the secretion of the pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), the inflammatory mediators (HIS, 5-HT, PGE2 and NO), the inflammation-related enzymes (iNOS and COX-2), as well as promoting the production of the anti-inflammatory cytokines IL-10.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Phillyrea latifolia L. (Oleaceae), commonly found in the Mediterranean region in Turkey, is used as medicinal teas for weight loss and hyperglycaemia in folk medicine. Objective The study investigated the possible effects of P. latifolia leaves aqueous extract's on weight loss and biochemical-histological changes in the rats fed a high-energy diet (HED), also isolated and determined the main phenolic compounds. Materials and methods Twenty-four male Wistar albino rats were divided into four equal groups such as the HED group fed a HED, the PLE group given only the extract of P. latifolia leaves (220 mg/kg), the HED + PLE group administrated with the extract of leaves (220 mg/kg) after being fed with HED and a control group fed with standard pellet diet. Results PLE administration caused a remarkable decrement of body weight in the HED + PLE group (p < 0.05). PLE showed an improved effect on structural integrity and decreased leukocyte infiltration in liver and small intestinal tissues. The blood glucose (117.3 mmol/L), leptin (5.6 ng/mL), total cholesterol (61.8 mg/dL) and LDL (9.3 mmol/L) levels were significantly increased in the HED group. PLE administration in the HED group decreased these levels. The levels of HDL (26.8 mmol/L) in the HED + PLE group were higher than both control and HED groups. Chemical composition was investigated and luteolin 7-O-glucoside and chlorogenic acid were determined for the first time in Turkish sample from the EtOAc extract of leaves. Discussion and conclusion Phillyrea latifolia leaves may have beneficial effects on obesity related cellular problems and may become a good source of antidiabetic medication.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Cyclophosphamide (CTX) is used to treat different cancer types, although it causes severe hepatotoxicity due to its oxidative stress effect. Rosmarinus officinalis, L. (Lamiaceae) has a therapeutic potential against hepatotoxicity due to its antioxidant activity. Objective The objective of this study is to investigate the phytochemical analysis of the methanol extract of Rosmarinus officianalis leaves (MEROL) and its efficacy against CTX-induced hepatotoxicity. Materials and methods The phytochemical analyses were assessed spectrophotometericaly. To assess the MEROL efficacy, 72 Swiss albino mice were divided into six groups. Group 1 was control, groups 2 and 3 included mice which were injected intraperitoneally (i.p.) with 100 or 200 mg/kg of MEROL at days 1, 4, 7, 10, 13 and 16; group 4 was injected (i.p.) with CTX (200 mg/kg) at day 17, groups 5 and 6 were injected (i.p.) with MEROL as groups 3 and 4 followed by 200 mg/kg CTX at day 17, respectively. At day 22, six mice from each group were sacrificed and the others were sacrificed at day 37. Results MEROL has a high content of total phenolics, saponins, total antioxidant capacity and DPPH radical scavenging activity. The median lethal dose (LD50) value of MEROL was 4.125 g/kg b.w. The inhibitory concentration 50 (IC50) value for DPPH radical scavenging was 55 μg/mL. Pretreatment with 100 mg/kg MEROL for 16 d ameliorated CTX-induced hepatotoxicity represented in lowering the levels of the aspartate aminotransferase (AST) and lipid profile and minimizing the histological damage. Conclusions Pretreatment with 100 mg/kg b.w. MEROL mitigated CTX-induced hepatotoxicity due to its antioxidant activity.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Withania somnifera (L.) Dunal is traditionally used for treating various ailments, but lacks scientific evaluation. Objective This study evaluates Withania somnifera (WS) for its effect on platelet activity and inflammatory enzymes. Materials and methods Aqueous and ethanolic (1:1) leaf extracts were subjected to in vitro indirect haemolytic activity using Naja naja venom, human platelet aggregation was quantified for lipid peroxidation using arachidonic acid (AA) as agonist and 5-lipoxygenase (5-LOX) levels were determined using standard spectrometric assays. Further, molecular docking was performed by the ligand fit method using molegro software package (Molegro ApS, Aarhus, Denmark). Results The study found that aqueous and ethanol extracts have very negligible effect (15%) with an IC50 value of 13.8 mg/mL on PLA2 from Naja naja venom. Further, extracts of WS also had very little effect (18%) with an IC50 value of 16.6 mg/mL on malondialdehyde (MDA) formation. However, a 65% inhibition of 5-LOX with an IC50 value of 0.92 mg/mL was observed in 1:1 ethanol extracts. The same was evident from SAR model with the active ingredient withaferin A binding predominantly on Phe 77, Tyr 98, Arg 99, Asp 164, Leu 168, Ser 382, Arg 395, Tyr 396 and Tyr 614 with an atomic contact energy value of -128.96 compared to standard phenidone (-103.61). Thus, the current study validates the application of WS for inflammatory diseases. Conclusion This study reveals the inhibitory potential of W. somnifera on inflammatory enzymes and platelet aggregation. Thus, WS can serve as a newer, safer and affordable medicine for inflammatory diseases.
    No preview · Article · Feb 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties.Objective The current study investigates the effects of protective effects of chlorogenic acid (CGA) on d-galactose-induced liver and kidney injury.Materials and methods Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of d-galactose (d-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured.Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in d-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in d-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in d-gal mice (p <0.05).Discussion and conclusion These findings suggest that CGA attenuates d-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.
    No preview · Article · Jan 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Myrtle, Myrtus communis L. (Myrtaceae), is a medicinal plant well known for its richness in phenolic compounds and its beneficial effects for the treatment of gastrointestinal disorders.Objective In the present work, the protective effect of the myrtle berry seed aqueous extract (MBSAE) against esophageal reflux (ER)-induced damage in esophagus mucosa as well as the mechanisms implicated was determined.Materials and methods In this respect, adult male Wistar rats were used and divided into seven groups: Control, ER, ER + various doses of MBSAE, ER + famotidine or ER + gallic acid. The ER was induced and animals were per orally (p.o.) treated with MBSAE or reference molecules during 6 h. The phytochemical screening was determined using colourimetric analysis.Results MBSAE is rich in total polyphenols and anthocyanins and exhibited an important in vitro antioxidant activity. In vivo, we firstly found that ER led to marked macroscopic and histopathological changes in esophagus. The results showed, also, that the ER was accompanied by a state of oxidative stress as assessed by an increase of lipid peroxidation, a decrease of the sulphhydryl groups and glutathione levels, as well as antioxidant enzyme activities depletion. MBSAE abrogated all morphological, histopathological and biochemical alterations. We showed also that ER increased esophageal calcium, hydrogen peroxide (H2O2) and free iron levels while MBSAE treatment protected against intracellular mediators deregulation.Conclusion Our data suggest that MBSAE exerted a potential protective effect against ER-induced damage in rat esophagus, at least in part, due to its antioxidant properties.
    No preview · Article · Jan 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Monoamine oxidase (MAO) inhibitors are used in the treatment of depression, anxiety disorders, and the symptomatic treatment of Parkinson's disease. Eryngium, the most representative of the Apiaceae family, is well known for the presence of essential oils (EOs), which have already demonstrated MAO inhibitory potential.Objective The objective of this study is to evaluate the MAO inhibitory capacity of the EOs obtained from Eryngium floribundum Cham. & Schlecht. (EF), E. eriophorum Cham. & Schlecht. (EE), E. nudicaule Lam. (EN), E. horridum Malme (EH), and E. pandanifolium Cham. & Schlecht. (EP).Materials and methods EOs were obtained from fresh whole plants by hydrodistillation (3 h). Chemical analyses were performed by GC/MS using apolar and polar columns, with oven temperature from 60 to 300 °C at 3 °C/min. The MAO-A and -B activities were evaluated in vitro by an end-point method using kynuramine as the substrate and mitochondrial suspension or human recombinant enzymes as the enzymatic source. DMSO 2%, clorgyline 10−7 M, and pargyline 10−6 M were used as controls.Results and discussion EFEO, EEEO, ENEO, EHEO, and EPEO GC/MS analysis showed (E)-caryophyllene (4.9–10.8%), germacrene D (0.6–35.1%), bicyclogermacrene (10.4–17.2), spathulenol (0.4–36.0%), and globulol (1.4–18.6%) as main constituents. None of the EOs inhibited MAO-A activity (4 and 40 μg/mL). However, EHEO inhibited MAO-B activity with an IC50 value of 5.65 μg/mL (1–200 μg/mL). Pentadecane (10 μM), its major constituent (53.5%), did not display significant MAO-B inhibition.Conclusion The study demonstrates the promising application of Eryngium species as a source of potential central nervous system bioactive secondary metabolites, specially related to neurodegenerative disorders.
    No preview · Article · Jan 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context Previous studies have shown that Scutellariae Radix, the dried root of Scutellaria baicalensis Georgi (Labiatae), has a certain inhibitory effect on P-glycoprotein (P-gp), but the effects of its main active constituents on P-gp are still ambiguous. Objectives In vitro studies were performed to investigate the effects of its main active constituents (baicalin and its aglycone, baicalein) on the activity and expression of P-gp in intestine using Caco-2 cells and rat gut sacs. Materials and methods In Caco-2 cell experiments, the effects of baicalin and baicalein on P-gp activity were investigated using a P-gp substrate, rhodamine 123 and non-substrate fluorescein Na, by determining their intracellular fluorescence accumulation, and their effects on P-gp expression were determined using flow cytometry. In addition, rat gut sac model was selected to investigate the effects of baicalin and baicalein on the transport of verapamil, a classical P-gp substrate. The gut sacs of male Sprague-Dawley rats were filled with 0.4 mL the test solution contained verapamil (0.2575 mg/mL) and the drugs [baicalin and baicalein, at concentrations of 1/8 IC50 (59.875, 41.5 μg/mL), 1/4 IC50 (119.75, 83 μg/mL) and 1/2 IC50 (239.5, 166 μg/mL)], and then incubated in Tyrode's solution for a period of time. After termination of the incubation, the incubated solution was processed for the subsequent detection. Results According to the results of MTT assay, the IC50 values of verapamil, baicalin and baicalein were 104, 479, 332 μg/mL, respectively. The obtained results from the two models were confirmed mutually. As a result, baicalin exhibited no obvious effect on intracellular accumulation of Rh-123, and almost had no effect on P-gp expression and verapamil transportation, while baicalein significantly increased intracellular accumulation of Rh-123 (p < 0.01), down-regulated P-gp expression (p < 0.01) and increased the transport of verapamil (p < 0.05). Discussion and conclusion The results indicated that baicalein may be a P-gp inhibitor, which presented obvious inhibitory effects on P-gp activity and expression level. A comparison of the structures of baicalin and baicalein indicates that the existence of glucosyl plays a decisive role in influencing the activity and expression of P-gp.
    No preview · Article · Jan 2016 · Pharmaceutical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine.Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines.Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4′-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays.Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio.Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway.
    No preview · Article · Jan 2016 · Pharmaceutical Biology