Cell Structure and Function (Cell Struct Funct)

Publisher: Nihon Saibō Seibutsu Gakkai

Journal description

Journal of the Japan Society of Cell Biology

Current impact factor: 1.68

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.684
2013 Impact Factor 2.35
2012 Impact Factor 1.647
2011 Impact Factor 2.292
2010 Impact Factor 3.265
2009 Impact Factor 2.568
2008 Impact Factor 2.152
2006 Impact Factor 2.143
2005 Impact Factor 3.354
2004 Impact Factor 2.932
2003 Impact Factor 1.664
2002 Impact Factor 0.872
2001 Impact Factor 1.26
2000 Impact Factor 0.96
1999 Impact Factor 1.322
1998 Impact Factor 1.453
1997 Impact Factor 0.942
1996 Impact Factor 0.772
1995 Impact Factor 0.98
1994 Impact Factor 0.898
1993 Impact Factor 1.186
1992 Impact Factor 1.351

Impact factor over time

Impact factor

Additional details

5-year impact 1.48
Cited half-life >10.0
Immediacy index 0.22
Eigenfactor 0.00
Article influence 0.56
Website Cell Structure and Function website
Other titles Cell structure and function (Online)
ISSN 1347-3700
OCLC 53814898
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.
    No preview · Article · Feb 2016 · Cell Structure and Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene editing methods were applied to the study of E-cadherin function in epithelial cells. The E-cadherin gene in epithelial DLD-1 cells was ablated using TALEN. The resultant cells showed round fibroblast-like morphology and had almost no Ca(2+)-dependent cell aggregation activity. E-cadherin re-expression in the knockout cells restored epithelial cell morphology and strong Ca(2+)-dependent cell-cell adhesion activity, indicating that the knockout cells retained the ability to support cadherin function. The knockout cells showed partial localization of desmoplakin and ZO-1 at intercellular contact sites. The transfectants expressing mutant E-cadherin lacking the cytoplasmic domain showed clear localization of desmoplakin and ZO-1 at cell-cell contact sites, although the cells had only weak Ca(2+)-dependent cell adhesion activity. Electron microscopy revealed the formation of intercellular junctions and apico-basal polarity in these cells. A portion of these cells occasionally formed an epithelial-like structure after prolonged culture. When the cells were treated with blebbistatin, the localization was enhanced. However, the localization was incomplete and contained defects. Double-knockout MDCK cells for the E-cadherin and cadherin-6 genes showed similar results, suggesting that the above properties were general. The present results showed that an epithelial-like structure could be formed without E-cadherin, but that the construction of mature epithelia requires E-cadherin.
    No preview · Article · Aug 2015 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous types of cancer cells migrate into extracellular tissues. This phenomenon is termed invasion, and is associated with poor prognosis in cancer patients. In this study, we demonstrated that filamin B (FLNb), an actin-binding protein, is highly expressed in cancer cell lines that exhibit high invasiveness, with a spindle morphology, into 3D collagen matrices. In addition, we determined that knockdown of FLNb in invasive cancer cells converts cell morphology from spindle-shaped, which is associated with high invasiveness, to round-shaped with low invasiveness. Furthermore, di-phosphorylation of myosin regulatory light chain (MRLC) and phosphorylation of focal adhesion kinase (FAK) are inhibited in FLNb-knockdown cancer cells. These results suggest that FLNb enhances invasion of cancer cells through phosphorylation of MRLC and FAK. Therefore, FLNb may be a new therapeutic target for invasive cancers.
    Preview · Article · Apr 2015 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.
    Preview · Article · Feb 2015 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NACK kinesins (NACK1, NACK2 in tobacco and AtNACK1/HINKEL, AtNACK2/STUD/TETRASPORE in Arabidopsis), members of a plant-specific kinesin-7 family, are required for cytokinesis. Previous studies using tobacco and Arabidopsis cells showed that NACK1 and AtNACK1 at the phragmoplast midzone activate the MAP kinase cascade during the late M phase, which is critical for the cell plate formation. However, the loss-of-function phenotype has not been investigated in details in living cells and the molecular activity of this kinesin remains to be determined. Here, we report the mitotic roles and activity of the NACK kinesins in the moss Physcomitrella patens. When we simultaneously knocked down three PpNACKs by RNA-interference (RNAi) in protonemal cells, we observed a cytokinesis failure following a defect in phragmoplast expansion. In addition, misaligned chromosomes were frequently detected in the pre-anaphase spindle and the anaphase onset was significantly delayed, indicating that PpNACK also plays a role in pre-anaphase. Consistent with the appearance of early and late mitotic phenotypes, endogenous PpNACK was localised to the interpolar microtubule (MT) overlap from prometaphase through telophase. In vitro MT gliding assay and single motor motility assay showed that PpNACK-b is a processive, plus-end-directed motor, suggesting that PpNACK is capable of transporting cargoes along the spindle/phragmoplast MT. Our study using Physcomitrella patens demonstrated that PpNACK is an active motor protein and identified unexpected and conserved roles of PpNACK during the mitosis of P. patens.
    Preview · Article · Feb 2015 · Cell Structure and Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe the design and synthesis of a bifunctional two-photon fluorescence probe, N,N'-dimethyl-4,4'-(biphenyl-2,1-ethenediyl)dipyridinium hexafluorophosphate (BP6). HeLa, Hek293, and Paramecium caudatum cells were stained with BP6. BP6 accumulated on the mitochondria of all three cell types when the mitochondrial membrane potential was high. As the mitochondrial membrane potential decreased following the addition of carbonyl cyanide m-chlorophenyl hydrazine, BP6 moved from the mitochondria to the nucleus in a reversible manner, depending on the mitochondrial membrane potential status. The maximum value of the two-photon absorption cross-section of BP6 is 250 GM (1 GM = 1 × 10(-50) cm(4) s molecules(-1) photon(-1)). This value is 3 and 30 times larger, respectively, than that of the conventional mitochondria selective probes, rhodamine 123 and green fluorescence protein. These results suggest that BP6 should be useful for monitoring mitochondrial membrane potential by two-photon excitation.
    No preview · Article · Oct 2014 · Cell Structure and Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells routinely maintain the main epidermal components, i.e. the interfollicular epidermis, hair follicles, and sweat glands. Human sweat glands present throughout the body are glandular exocrine organs that mainly play a role in thermoregulation by sweating. Emerging evidence points to the presence of stem cells in sweat glands, but it remains unclear whether such stem cells exist in human sweat glands. Here, we attempted to gather evidence for stem cells in human sweat glands, which would be characterized by self-renewal ability and multipotency. First, we explored human sweat gland cells for expression of stem cell markers. CD29 and Notch, epidermal stem cell markers, were found to reside among α-smooth muscle actin-positive myoepithelial cells in human sweat glands. Next, sweat gland myoepithelial cells were isolated from human skin as a CD29(hi)CD49f(hi) subpopulation. The myoepithelial cell-enriched CD29(hi)CD49f(hi) subpopulation possessed the ability to differentiate into sweat gland luminal cells in sphere-forming assays. Furthermore, CD29(hi)CD49f(hi) subpopulation-derived sphere-forming cells exhibited long-term proliferative potential upon multiple passaging, indicating that the CD29(hi)CD49f(hi) myoepithelial subpopulation includes stem cells with self-renewal ability. These findings provide evidence that human sweat gland myoepithelial cells contain stem cells that possess both self-renewal ability and multipotency to differentiate into sweat glands.
    No preview · Article · Sep 2014 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription of ribosomal RNA genes (rDNA) is a rate-limiting step in ribosome biogenesis and changes profoundly in response to environmental conditions. Recently we reported that JmjC demethylase KDM2A reduces rDNA transcription on starvation, with accompanying demethylation of dimethylated Lys 36 of histone H3 (H3K36me2) in rDNA promoter. Here, we characterized the functions of two domains of KDM2A, JmjC and CxxC-ZF domains. After knockdown of endogenous KDM2A, KDM2A was exogenously expressed. The exogenous wild-type KDM2A demethylated H3K36me2 in the rDNA promoter on starvation and reduced rDNA transcription as endogenous KDM2A. The exogenous KDM2A with a mutation in the JmjC domain lost the demethylase activity and did not reduce rDNA transcription on starvation, showing that the demethylase activity of KDM2A itself is required for the control of rDNA transcription. The exogenous KDM2A with a mutation in the CxxC-ZF domain retained the demethylase activity but did not reduce rDNA transcription on starvation. It was found that the CxxC-ZF domain of KDM2A bound to the rDNA promoter with unmethylated CpG dinucleotides in vitro and in vivo. The exogenous KDM2A with the mutation in the CxxC-ZF domain failed to reduce H3K36me2 in the rDNA promoter on starvation. Further, it was suggested that KDM2A that bound to the rDNA promoter was activated on starvation. Our results demonstrate that KDM2A binds to the rDNA promoter with unmethylated CpG sequences via the CxxC-ZF domain, demethylates H3K36me2 in the rDNA promoter in response to starvation in a JmjC domain-dependent manner, and reduces rDNA transcription.
    Preview · Article · Feb 2014 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein Kinase D (PKD) 1, 2, and 3 are members of the PKD family. PKDs influence many cellular processes, including cell polarity, structure of the Golgi, polarized transport from the Golgi to the basolateral plasma membrane and actin polymerization. However, the role of the PKD family in cell polarity has not yet been elucidated in vivo. Here, we show that KO mice displayed similar localization of the apical and basolateral proteins, transport of VSV-G and a GPI-anchored protein, and similar localization of actin filaments. As DKO mice were embryonic lethal, we generated MEFs that lacked all PKD isoforms from the PKD1 and PKD2 double floxed mice using Cre recombinase and PKD3 siRNA. We observed a similar localization of various organelles, a similar time course in the transport of VSV-G and a GPI-anchored protein, and a similar distribution of F-actin in the PKD-null MEFs. Collectively, our results demonstrate that the complete deletion of PKDs does not affect the transport of VSV-G or a GPI-anchored protein, and the distribution of F-actin. However, simultaneous deletion of PKD1 and PKD2 affect embryonic development, demonstrating their functional redundancy during development.
    Preview · Article · Jan 2014 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple type I and II hair keratins are expressed in hair-forming cells but the role of each protein in hair fiber formation remains obscure. In this study, recombinant proteins of human type I hair keratins (K35, K36 and K38) and type II hair keratins (K81 and K85) were prepared using bacterial expression systems. The heterotypic subunit interactions between the type I and II hair keratins were characterized using two-dimensional gel electrophoresis and surface plasmon resonance (SPR). Gel electrophoresis showed that the heterotypic complex-forming urea concentrations differ depending on the combination of keratins. K35-K85 and K36-K81 formed relatively stable heterotypic complexes. SPR revealed that soluble K35 bound to immobilized K85 with a higher affinity than to immobilized K81. The in vitro intermediate filament (IF) assembly of the hair keratins was explored by negative-staining electron microscopy. While K35-K81, K36-K81 and K35-K36-K81 formed IFs, K35-K85 afforded tight bundles of short IFs and large paracrystalline assemblies, and K36-K85 formed IF tangles. K85 promotes lateral association rather than elongation of short IFs. The in vitro assembly properties of hair keratins depended on the combination of type I and II hair keratins. Our data suggest the functional significance of K35-K85 and K36-K81 with distinct assembly properties in the formation of macrofibrils.
    Preview · Article · Jan 2014 · Cell Structure and Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serine/threonine kinase Akt plays a critical role in cell proliferation, survival, and tumorigenesis. As a central kinase in the phosphatidylinositol 3-kinase pathway, its activation mechanism at the plasma membrane has been well characterized. However, the subcellular Akt activity in living cells is still largely unknown. Fluorescence resonance energy transfer (FRET)-based biosensors have emerged as indispensable tools to visualize the subcellular activities of signaling molecules. In this study, we developed a highly specific FRET biosensor for Akt based on the Eevee backbone, called Eevee-iAkt. Using inhibitors targeting kinases upstream and downstream of Akt, we showed that Eevee-iAkt specifically monitors Akt activity in living cells. To visualize Akt activity at different subcellular compartments, we targeted Eevee-iAkt to raft and non-raft regions of the plasma membrane, mitochondria, and nucleus in HeLa and Cos7 cells. Interestingly, we revealed substantial differences in Akt activation between HeLa and Cos7 cells upon epidermal growth factor (EGF) stimulation: Akt was transiently activated in HeLa cells with comparable levels at the plasma membrane, cytosol, and mitochondria. In contrast, sustained and spatially localized Akt activation was observed in EGF-stimulated Cos7 cells. We found high Akt activity at the plasma membrane, low activity in the cytosol, and no detectable activity at the mitochondria and nucleus in Cos7 cells. The Eevee-iAkt biosensor was shown to be a valuable tool to study the functional relationship between subcellular Akt activation and its anti-apoptotic role in living cells.
    No preview · Article · Nov 2013 · Cell Structure and Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paracellular pathway of an epithelial cellular sheet can be divided into two parts: one between two adjacent cells sealed by tight junctions (TJs) and one at tricellular contacts (TCs), where the corners of three cells meet. At TCs of epithelial cells, there is a specialized mode of TJs, namely tricellular TJs (tTJs), required for full barrier function of the cellular sheet. However, tTJs have not been described in endothelial cells to date. Here, we investigated whether tTJs occur in endothelial cells by analyzing the TC localizations of tTJ markers, tricellulin and angulin family proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2), by immunofluorescence staining of frozen sections of various tissues from adult mice. Endothelial TCs in most tissues revealed no detectable staining of tricellulin or angulins. However, tricellulin and angulin-1/LSR were specifically concentrated in TCs of brain and retinal endothelial cells, which form the blood-brain barrier (BBB) and inner blood-retinal barrier (BRB), respectively. Even in the brain, endothelial cells in the choroid plexus and the median eminence, one of the circumventricular organs, did not show concentration of tricellulin or angulins at TCs. These findings indicate the existence of tTJs in endothelial cells in vivo and suggest that tTJs impart important characteristics to the BBB and inner BRB.
    No preview · Article · Nov 2013 · Cell Structure and Function