Journal of Communications and Networks (J COMMUN NETW-S KOR)

Publisher: Hanʼguk Tʻongsin Hakhoe; IEEE Communications Society, Institute of Electrical and Electronics Engineers

Current impact factor: 1.01

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.007
2013 Impact Factor 0.747
2012 Impact Factor 0.309
2011 Impact Factor 0.291
2010 Impact Factor 0.351
2009 Impact Factor 0.224
2008 Impact Factor 0.273
2007 Impact Factor 0.223
2006 Impact Factor 0.233
2005 Impact Factor 0.457
2004 Impact Factor 0.403
2003 Impact Factor 0.571
2002 Impact Factor 0.463

Impact factor over time

Impact factor
Year

Additional details

5-year impact 0.78
Cited half-life 3.50
Immediacy index 0.07
Eigenfactor 0.00
Article influence 0.35
Website Journal of Communications and Networks website
Other titles JCN
ISSN 1229-2370
OCLC 41177577
Material type Periodical
Document type Journal / Magazine / Newspaper

Publisher details

Institute of Electrical and Electronics Engineers

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on Author's personal website, employers website or publicly accessible server
    • Author's post-print on Author's server or Institutional server
    • Author's pre-print must be removed upon publication of final version and replaced with either full citation to IEEE work with a Digital Object Identifier or link to article abstract in IEEE Xplore or replaced with Authors post-print
    • Author's pre-print must be accompanied with set-phrase, once submitted to IEEE for publication ("This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible")
    • Author's pre-print must be accompanied with set-phrase, when accepted by IEEE for publication ("(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")
    • IEEE must be informed as to the electronic address of the pre-print
    • If funding rules apply authors may post Author's post-print version in funder's designated repository
    • Author's Post-print - Publisher copyright and source must be acknowledged with citation (see above set statement)
    • Author's Post-print - Must link to publisher version with DOI
    • Publisher's version/PDF cannot be used
    • Publisher copyright and source must be acknowledged
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A massive distributed storage system is the foundation for big data operations. Access latency performance is a key metric in distributed storage systems since it greatly impacts user experience while existing codes mainly focus on improving performance such as storage overhead and repair cost. By generating parity nodes from parity nodes, in this paper we design new XOR-based erasure codes hierarchical tree structure code (HTSC) and high failure tolerant HTSC (FH_HTSC) to reduce access latency in distributed storage systems. By comparing with other popular and representative codes, we show that, under the same repair cost, HTSC and FH.HTSC codes can reduce access latency while maintaining favorable performance in other metrics. In particular, under the same repair cost, FH.HTSC can achieve lower access latency, higher or equal failure tolerance and lower computation cost compared with the representative codes while enjoying similar storage overhead. Accordingly, FH.HTSC is a superior choice for applications requiring low access latency and outstanding failure tolerance capability at the same time.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a variety of reduced complexity soft-in soft-output detection algorithms have been introduced for iterative detection and decoding (IDD) systems. However, it is still challenging to implement soft-in soft-output detectors for MIMO systems due to heavy burden in computational complexity. In this paper, we propose a soft detection algorithm for MIMO systems which performs close to the full dimensional joint detection, yet offers significant complexity reduction over the existing detectors. The proposed algorithm, referred to as soft-input soft-output successive group (SSG) detector, detects a subset of symbols (called a symbol group) successively using a deliberately designed preprocessing to suppress the inter-group interference. In fact, the proposed preprocessor mitigates the effect of the interfering symbol groups successively using a priori information of the undetected groups and a posteriori information of the detected groups. Simulation results on realistic MIMO systems demonstrate that the proposed SSG detector achieves considerable complexity reduction over the conventional approaches with negligible performance loss.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multitenancy has gained growing importance with the development and evolution of cloud computing technology. In a multitenant environment, multiple tenants with different demands can share a variety of computing resources (e.g., CPU, memory, storage, network, and data) within a single system, while each tenant remains logically isolated. This useful multitenancy concept offers highly efficient, and cost-effective systems without wasting computing resources to enterprises requiring similar environments for data processing and management. In this paper, we propose a novel approach supporting multitenancy features for Apache Hadoop, a large scale distributed system commonly used for processing big data. We first analyze the Hadoop framework focusing on "yet another resource negotiator (YARN)", which is responsible for managing resources, application runtime, and access control in the latest version of Hadoop. We then define the problems for supporting multitenancy and formally derive the requirements to solve these problems. Based on these requirements, we design the details of multitenant Hadoop. We also present experimental results to validate the data access control and to evaluate the performance enhancement of multitenant Hadoop.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: The coexistence among different systems is a major problem in communications. Mutual interference between different systems should be analyzed and mitigated before their deployment. The paper focuses on two aspects that have an impact on the system performance. First, the coexistence analysis, i.e. evaluating the mutual interference. Second aspect is the coexistence techniques, i.e. appropriate system modifications that guarantee the simultaneous use of the spectrum by different technologies. In particular, the coexistence problem is analyzed between ultra-wide bandwidth (UWB) and narrow bandwidth (NB) systems emphasizing the role of spectrum sensing to identify and classify the NB interferers that mostly affect the performance of UWB system. A direct sequence (DS)-time hopping (TH) code design technique is used to mitigate the identified NB interference. Due to the severe effect of Narrowband Interference on UWB communications, we propose an UWB transceiver that utilizes spectrum-sensing techniques together with mitigation techniques. The proposed transceiver improves both the UWB and NB systems performance by adaptively reducing the mutual interference. Detection and avoidance method is used where spectrum is sensed every time duration to detect the NB interferer's frequency location and power avoiding it's effect by using the appropriate mitigation technique. Two scenarios are presented to identify, classify, and mitigate NB interferers.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Big data is more than a matter of size; it is an emerging paradigm of data of very large size (volume) and fast in/out (velocity), from various sources (variety), and of high value for knowledge extraction and decision making. Technological advances in data gathering have led to a rapid proliferation of big data in diverse areas such as remote sensing, medicine, the Internet, and social sectors. Such data brings opportunities and challenges to scientists and engineers. In order for us to make use of this massive amount of data, new data management and computational approaches are needed to permit scientists and engineers to analyze the data in (nearly) real time, often in a distributed or streaming manner. Various technologies are being discussed, and some have been realized, to support the handling of big data. In addition, big dataset cannot be stored in one location, and massively parallel processing databases and scalable storage systems are being designed to store the large datasets. What is more, big data generates an industry of supporting architectures; many cloud computing platforms and frameworks are developed to handle the big data operations, such as MapReduce. To deal with different properties of big data, different algorithms also need to be developed. Overall, big data is an opportunity to find insights in new and emerging types of data and content, to make models more agile, and to answer questions that were previously considered beyond our reach. The purpose of this special is to highlight some recent advancement to address such challenges in the big data era.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, we have seen a proliferation of mobile-network-enabled smart objects, such as smart-phones and smart-watches, that form a cyber-physical integrated network to connect the cyber and physical worlds through the capabilities of sensing, communicating, and computing. Discovery of the relationship between smart objects is a critical and nontrivial task in cyber-physical integrated network applications. Aiming to find the most stable relationship in the heterogeneous and dynamic cyber-physical network, we propose a distributed and efficient relationship-discovery algorithm, called dynamically maximizing remaining unchanged time with minimum connected dominant set (DMRUT-MCDS) for constructing a backbone with the smallest scale infrastructure. In our proposed algorithm, the impact of the duration of the relationship is considered in order to balance the size and sustain time of the infrastructure. The performance of our algorithm is studied through extensive simulations and the results show that DMRUT-MCDS performs well in different distribution networks.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study analyzes the performance of power-line communications for sending open automated demand response (OpenADR) signals. In particular, we study main channel disturbances that can affect end-to-end communications and which have not been previously studied in detail. Our analysis takes into account physical phenomena, such as background and impulsive noise sources, channel attenuation, and multipath effects, and considers the physical, network, and applications layers of the communications structure. The performance of the physical layer is the basis for computing the packet error rate. In analyzing application performance, we focus specifically on the latency in several communication environments. If a channel is impaired only by background noise, latencies are less than 40 seconds. With the addition of impulsive noise in the channel, this value increases as long as 68 seconds. Using these figures, we find that power-line technology is more suitable for "slow" demand programs, such as day-ahead or day-of curtailments, rather than ancillary services markets, which require near-real-time communication.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Assuming perfect channel state information (CSI) at the transmitter and receiver, the optimization problem of maximizing the minimum Euclidean distance between two received signals by a linear precoder is considered for multiple-input multiple-output (MIMO) systems with arbitrary dimensions and arbitrary-ary quadrature amplitude modulation (QAM) input. A general precoding framework is first presented based on the Gram matrix, which is shown for 2-dimensional (2-D) and 3-dimensional (3D) MIMO systems when employing the ellipse expanding method (EEM). An extended precoder for high-dimensional MIMO system is proposed following the precoding framework, where the Gram matrix for high-dimensional precoding matrix can be generated through those chosen from 2-D and 3-D results in association with a peimutation matrix. A complexity-reduced maximum likelihood detector is also obtained according to the special structure of the proposed precoder. The analytical and numerical results indicate that the proposed precoder outperforms the other precoding schemes in terms of both minimum distance and bit error rate (BER).
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the limited error tracking problem is investigated for distributed leader-following wireless sensor networks (LFWSNs), where all sensors share data by the local communications, follower sensors are influenced by leader sensors directly or indirectly, but not vice versa, all sensor nodes track a reference state that is determined by the states of all leader sensors, and tracking errors are limited. In a LFWSN, the communicating graph is mainly expressed by some complete subgraphs; if we fix subgraphs that are composed of all leaders while all nodes in complete subgraphs of followers run on the sleeping-awaking method, then the fixed leaders and varying followers topology is obtained, and the switching topology is expressed by a Markov chain. It is supposed that the measurements of all sensors are corrupted by additive noises. Accordingly, the limited error tracking protocol is proposed. Based on the theory of asymptotic boundedness in mean square, it is shown that LFWSN keeps the limited error tracking under the designed protocol.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.
    No preview · Article · Dec 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fast and accurate spectrum sensing over an ultra-wide bandwidth is a big challenge for the radio environment cognition. Considering sparse signal feature, two novel compressed sensing schemes are proposed, which can reduce compressed sampling rate in contrast to the traditional scheme. One algorithm is dynamically adjusting compression ratio based on modulation recognition and identification of symbol rate, which can reduce compression ratio. Furthermore, without priori information of the modulation and symbol rate, another improved algorithm is proposed with the application potential in practice, which does not need to reconstruct the signals. The improved algorithm is divided into two stages, which are the approaching stage and the monitoring stage. The overall sampling rate can be dramatically reduced without the performance deterioration of the spectrum detection compared to the conventional static compressed sampling rate algorithm. Numerous results show that the proposed compressed sensing technique can reduce sampling rate by 35%, with an acceptable detection probability over 0.9.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: MS Office suit software is the most widely used electronic documents by a large number of users in the world, which has absolute predominance in office software market. MS Office 2007-2013 documents, which use new office open extensible markup language (OOXML) format, could be illegally used as cover mediums to transmit secret information by offenders, because they do not easily arouse others suspicion. This paper proposes nine forensic methods and an integrated forensic tool for OOXML format documents on the basis of researching the potential information hiding methods. The proposed forensic methods and tool cover three categories; document structure, document content, and document format. The aim is to prevent covert communication and provide security detection technology for electronic documents downloaded by users. The proposed methods can prevent the damage of secret information embedded by offenders. Extensive experiments based on real data set demonstrate the effectiveness of the proposed methods.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the performance of multistage cooperation in decode-and-forward relay networks where the transmission between source and destination takes place in T ≥ 2 equal duration and orthogonal time phases with the help of relays. The source transmits only in the first time phase. All relays that can decode the source's transmission forward the source's message to the destination in the second time phase, using a space-time code. During subsequent time phases, the relays that have successfully decoded the source message using information from all previous transmitting relays, transmit the space-time coded symbols for the source's message. The non-decoding relays keep accumulating information and transmit in the later stages when they are able to decode. This process continues for T cooperation phases. We develop and analyze the outage probability of multistage cooperation protocol under orthogonal relaying. Through analytical results, we obtain the near-optimal placement strategy for relays that gives the best performance when compared with most other candidate relay location strategies of interest. For different relay network topologies, we also investigate an interesting tradeoff between an increased SNR and decreased spectral efficiency as the number of cooperation stages is increased. It is also shown that the largest multistage cooperation gain is obtained in the low and moderate SNR regime.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper considers a limited feedback system for two-way wireless relaying channels with physical network coding (PNC). For full feedback systems, the optimal structure with the PNC has already been studied where a modulo operation is employed. In this case, phase and power of two end node channels are adjusted to maximize the minimum distance. Based on this result, we design new quantization methods for the phase and the power in the limited feedback system. By investigating the minimum distance of the received constellation, we present a codebook design to maximize the worst minimum distance. Especially, for quantization of the power for 16-QAM, a new power quantization scheme is proposed to maximize the performance. Also, utilizing the characteristics of the minimum distance observed in our code-book design, we present a power allocation method which does not require any feedback information. Simulation results confirm that our proposed scheme outperforms conventional systems with reduced complexity.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article exploits spatial diversity for jamming to prevent wiretapping in the extreme case in which an eavesdropper is located near the source and a common jamming signal is unavailable. To address this challenge, the jamming signal is allowed to carry a random binary message. Then, it is proposed that the active intermediate node transmits this jamming signal and the decoding of this signal at both source and destination is physically secured as result of using the physical-layer security method. If the source and the destination securely and correctly decode this jamming message, the source transmits another message which is created from combining its information message and the decoded message using the network-coding method. Therefore, this method prevents the transmissions from being eavesdropped upon by the source-wiretapping.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using short-range wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for sub-clusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.
    No preview · Article · Oct 2015 · Journal of Communications and Networks
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.
    No preview · Article · Oct 2015 · Journal of Communications and Networks