Infection and Drug Resistance

Publisher: Dove Medical Press

Journal description

An international, peer-reviewed, Open Access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventative strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. In particular, research and clinical development of novel mechanism of action anti-infectives and the optimal use of existing therapies will be highlighted. Other areas of coverage include diagnostic and early detection of infection, proteomic and genomic studies to characterize surface proteins in resistant organisms, and educational and infection control strategies. With increased mortality, morbidity and healthcare costs associated with developing resistance, research, clinical studies and programs designed to improve outcomes and patient adherence and satisfaction will be given priority. The journal is characterized by the rapid reporting of reviews, guidelines, original research and clinical studies in all areas of infection and drug resistance.

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
Website Journal of Infection and Drug Resistance - Dove Press Open Access Publisher
ISSN 1178-6973
Document type Journal / Internet Resource

Publisher details

Dove Medical Press

  • Pre-print
    • Author cannot archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On institutional repository, central repository or subject -based repository, including PubMed Central
    • Creative Commons Attribution Non-Commercial License
    • UK funded authors may use a Creative Commons Attribution License
    • On a non-profit server
    • Must link to publisher version
    • Published source (journal and Dove Medical Press) must be acknowledged as original place of publication
    • Publisher's version/PDF may be used
    • All titles are open access journals
    • Publisher last contacted on 20/01/2013
  • Classification
    blue

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.
    Preview · Article · Feb 2016 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Luliconazole is a novel imidazole derivative, which has demonstrated in vitro efficacy against dermatophytes and Candida. The results from Phase III trials show that luliconazole 1% cream applied once daily for 2 weeks successfully resolved the clinical signs and symptoms as well as eradicated the pathologic fungi, which cause tinea pedis. A 1-week treatment with luliconazole 1% cream also produced favorable clinical and mycological results in clinical trials for tinea corporis and tinea cruris. Across trials, adverse events consisted mainly of localized reactions following application. The development of a new antifungal agent is timely due to mounting resistance among existing treatments. Because luliconazole requires a short duration of treatment, it may assist in reducing disease recurrence as a result of patient nonadherence.
    Preview · Article · Feb 2016 · Infection and Drug Resistance
  • Source

    Preview · Article · Jan 2016 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Stenotrophomonas maltophilia shows wide-spectrum resistance to antimicrobials and causes various infections in immunocompromised or critically ill patients with high mortality. In this era of antibiotics resistance, a revival of old antibiotics is now featured. We examined the clinical usefulness of latamoxef (LMOX) for the treatment of S. maltophilia infection. Patients and methods: The observational study was retrospectively performed at Okayama University Hospital (Okayama, Japan) from January 2011 to December 2013. LMOX was administered to 12 patients with S. maltophilia infection, with eleven of those patients being admitted to the intensive care unit. Results: Underlying conditions of the patients included postoperation, hematological transplantation, hepatic transplantation, and burn. Major infectious foci were surgical site infection (six cases), respiratory infection (four cases), blood stream infection (three cases), and burn site infection (one case). The doses of LMOX administered ranged from 1 g/d to 3 g/d for ten adult patients and from 40 mg/kg/d to 80 mg/kg/d for two pediatric patients. Microbiologic failure was seen in five (41.7%) of 12 cases, and 30-day and hospital mortality rates were 25% and 50%, respectively. Minimum inhibitory concentrations of LMOX were higher in the deceased group (4-64 µg/mL) than in the surviving group (1-4 µg/mL). Conclusion: LMOX treatment is not recommended for the treatment of S. maltophilia infection. Further investigation would be needed before its clinical use.
    Full-text · Article · Nov 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI), which has now been licensed to be used in different countries including the UK. Earlier studies have demonstrated that DTG when used with nucleoside backbone in treatment-naïve and - experienced patients has been well tolerated and demonstrated virological suppression comparable to other INSTIs and superiority against other first-line agents, including efavirenz and boosted protease inhibitors. Like other INSTIs, DTG uses separate metabolic pathways compared to other antiretrovirals and is a minor substrate for CYP-450. It does not appear to have a significant interaction with drugs, which uses the CYP-450 system. Nonetheless, it uses renal solute transporters that may potentially inhibit the transport of other drugs and can have an effect on the elimination of other drugs. However, the impact of this mechanism appears to be very minimal and insignificant clinically. The side effect profiles of DTG are similar to raltegravir and have been found to be well tolerated. DTG has a long plasma half-life and is suitable for once daily use without the need for a boosting agent. DTG has all the potential to be used as a first-line drug in combination with other nucleoside backbones, especially in the form of a single tablet in combination with abacavir and lamivudine. The purpose of this review article is to present the summary of the available key information about the clinical usefulness of DTG in the treatment of HIV infection.
    Full-text · Article · Oct 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment options for Clostridium difficile infection (CDI) remain limited despite this usually nosocomial infection posing an urgent threat to public health. A major paradox of the management of CDI is the use of antimicrobial agents to treat infection, which runs the risk of prolonged gut microbiota perturbation and so recurrence of infection. Here, we explore alternative CDI treatment and prevention options currently available or in development. Notably, strategies that aim to reduce the negative effects of antibiotics on gut microbiota offer the potential to alter current antimicrobial stewardship approaches to preventing CDI.
    Full-text · Article · Sep 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posaconazole is a triazole antifungal agent that has broad-spectrum activity against many yeasts and filamentous fungi, including Candida species, Cryptococcus neoformans, Aspergillus species, and Zygomycetes. This drug has been approved for the prevention of invasive fungal infections in patients with neutropenia and for the treatment of invasive fungal infections in hematopoietic stem cell transplant recipients with graft-versus-host disease. Studies on the clinical efficacy, safety, tolerability, and cost-effectiveness of posaconazole therapy were performed using the oral suspension form of the drug. Pharmacokinetic studies have found that the oral suspension form of posaconazole has problemeatic bioavailability: its absorption is affected by concomitant medication and food. This article discusses the pharmacokinetic properties of the newly developed posaconazole delayed-release tablet formulation and reviews the efficacy, safety, and cost-effectiveness of both the oral suspension and the new tablet formulation. In conclusion, the posaconazole tablet formulation has better systemic bioavailability, thereby enabling once-daily administration and better absorption in the presence of concomitant medication and food. However, well-designed clinical studies are needed to evaluate the use of the tablet formulation in real-life settings.
    Full-text · Article · Sep 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is the leading cause of death from an infectious cause. Because of its clinical importance, many investigators use animal models to understand the biologic mechanisms of influenza A virus replication, the immune response to the virus, and the efficacy of novel therapies. This review will focus on the biosafety, biosecurity, and ethical concerns that must be considered in pursuing influenza research, in addition to focusing on the two animal models - mice and ferrets - most frequently used by researchers as models of human influenza infection.
    Full-text · Article · Sep 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first New Delhi metallo-beta-lactamase (NDM) report in 2009, NDM has spread globally causing various types of infections. NDM-positive organisms produce in vitro resistance phenotypes to carbapenems and many other antimicrobials. It is thus surprising that the literature examining clinical experiences with NDM does not report corresponding poor clinical outcomes. There are many instances where good clinical outcomes are described, despite a mismatch between administered antimicrobials and resistant in vitro susceptibilities. Available in vitro data for either monotherapy or combination therapy does not provide an explanation for these observations. However, animal studies do begin to shed more light on this phenomenon. They imply that the in vivo expression of NDM may not confer clinical resistance to all cephalosporin and carbapenem antibiotics as predicted by in vitro testing but other resistance mechanisms need to be present to generate a resistant phenotype. As such, previously abandoned therapies, particularly carbapenems and beta-lactamase inhibitor combinations, may retain utility against infections caused by NDM producers.
    Full-text · Article · Sep 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.
    Full-text · Article · Aug 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246) is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies.
    Full-text · Article · Aug 2015 · Infection and Drug Resistance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its discovery in England and France in 1986, vancomycin-resistant Enterococcus has increasingly become a major nosocomial pathogen worldwide. Enterococci are prolific colonizers, with tremendous genome plasticity and a propensity for persistence in hospital environments, allowing for increased transmission and the dissemination of resistance elements. Infections typically present in immunosuppressed patients who have received multiple courses of antibiotics in the past. Virulence is variable, and typical clinical manifestations include bacteremia, endocarditis, intra-abdominal and pelvic infections, urinary tract infections, skin and skin structure infections, and, rarely, central nervous system infections. As enterococci are common colonizers, careful consideration is needed before initiating targeted therapy, and source control is first priority. Current treatment options including linezolid, daptomycin, quinupristin/dalfopristin, and tigecycline have shown favorable activity against various vancomycin-resistant Enterococcus infections, but there is a lack of randomized controlled trials assessing their efficacy. Clearer distinctions in preferred therapies can be made based on adverse effects, drug interactions, and pharmacokinetic profiles. Although combination therapies and newer agents such as tedizolid, telavancin, dalbavancin, and oritavancin hold promise for the future treatment of vancomycin-resistant Enterococcus infections, further studies are needed to assess their possible clinical impact, especially in the treatment of serious infections.
    Full-text · Article · Jul 2015 · Infection and Drug Resistance