International Journal of Molecular Medicine (INT J MOL MED)

Publisher: Panepistēmio tēs Krētēs, Spandidos Publications

Current impact factor: 2.09

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.088
2013 Impact Factor 1.88
2012 Impact Factor 1.957
2011 Impact Factor 1.573
2010 Impact Factor 1.814
2009 Impact Factor 1.98
2008 Impact Factor 1.88
2007 Impact Factor 1.847
2006 Impact Factor 1.854
2005 Impact Factor 2.09
2004 Impact Factor 3.19
2003 Impact Factor 1.94
2002 Impact Factor 2.063
2001 Impact Factor 1.689
2000 Impact Factor 1.899
1999 Impact Factor 1.058
1998 Impact Factor

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.01
Cited half-life 5.60
Immediacy index 0.44
Eigenfactor 0.01
Article influence 0.48
Website International Journal of Molecular Medicine website
Other titles International journal of molecular medicine (Online)
ISSN 1107-3756
OCLC 53915595
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Spandidos Publications

  • Pre-print
    • Author cannot archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Conditions
    • Publisher's version/PDF must be used
    • On Institutional Repository or Funder's repository
    • Must link to publisher version
    • Published source must be acknowledged with full citation
    • Publisher will automatically deposit authors post-print in PubMed Central or Europe PMC after 6 months or 12 months as required by funding agency
    • Reviewed 07 July 2014
  • Classification
    white

Publications in this journal

  • Xueqiang Jiang · Zhihao Li · Shengfang Jiang · Xuefei Tong · Xiaojing Zou · Wan Wang · Zhengang Zhang · Liang Wu · Deying Tian

    No preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute lymphocytic leukemia (ALL) is a common malignant tumor with a high morbidity rate among children, accounting for approximately 80% of leukemia cases. Although there have been improvements in the treatment of patients frequent relapse lead to a poor prognosis. The aim of the present study was to determine whether HOXA5 may be used as a target for gene therapy in leukemia in order to provide a new treatment. Mononuclear cells were extracted from the bone marrow according to the clinical research aims. After testing for ALL in the acute stage, the relative mRNA and protein expression of HOXA5 was detected in the ALL remission groups (n=25 cases per group) and the control group [n=20 cases, immune thrombocytopenia (ITP)]. Gene silencing by RNA interference (RNAi) was used to investigate the effect of silencing HOXA5 after small interfering RNA (siRNA) transfection to Jurkat cells. The HOXA5-specific siRNA was transfected to Jurkat cells using lipofectamine. The experiment was divided into the experimental group (liposomal transfection of HOXA5 targeting siRNA), the negative control group (liposomal transfection of cells with negative control siRNA) and the control group (plus an equal amount of cells and culture media only). Western blotting and quantitative fluorescent polymerase chain reaction (QF‑PCR) were used to detect the relative HOXA5 mRNA expression and protein distribution in each cell group. Cell distribution in the cell cycle and the rate of cells undergoing apoptosis were determined using flow cytometry. The expression of HOXA5 at the mRNA and protein levels in the acute phase of ALL was significantly higher than that in ALL in the remission and control groups. In cells transfected with HOXA5-specific siRNA, the expression of HOXA5 at the mRNA and protein levels decreased significantly (P<0.05). The distribution of cells in the cell cycle was also altered. Specifically, more cells were present in the G0/G1 phase compared to the S phase (P<0.05). In addition, the apoptotic rate was significantly higher in cells transfected with HOXA5‑specific siRNA (P<0.05). In conclusion, high expression levels of HOXA5 mRNA and protein in children with ALL indicate that HOXA5 is closely associated with childhood ALL. In addition, HOXA5-specific siRNA effectively silences HOXA5 gene expression and induces apoptosis and cell-cycle arrest in Jurkat cells, thus inhibiting cell proliferation.
    No preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • Ying He · Zhou Luan · Xunan Fu · Xun Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Ectopic apoptosis of vascular cells plays a critical role in the early stage development of diabetic retinopathy (DR). Uncoupling protein 2 (UCP2) is a mitochondrial modulator which protects against endothelial dysfunction. However, the role which UCP2 plays in endothelial apoptosis and its association with DR was unclear. In the present study, we investigated whether UCP2 functioned as an inhibitor of DR in endothelial cells. Firstly, we noted that in UCP2‑knockout mice retinal cell death and damage in vivo was similar to that of db/db diabetic mice. Additionally, UCP2 knockdown induced caspase-3 activation and exaggerated high glucose (HG)-induced apoptosis of human umbilical vein endothelial cells (HUVECs). Conversely, adenovirus-mediated UCP2 overexpression inhibited the apoptosis of HUVECs and HG-induced caspase-3 activation. Furthermore, HG treatment resulted in the opening of the permeability transition pore (PTP) and liberation of cytochrome c from mitochondria to the cytosol in HUVECs. Notably, UCP2 overexpression inhibited these processes. Furthermore, adenovirus-mediated UCP2 overexpression led to a significant increase in intracellular nitric oxide (NO) levels and a decrease in reactive oxygen species (ROS) generation in HUVECs. Collectively, these data suggest that UCP2 plays an anti-apoptotic role in endothelial cells. Thus, we suggest that approaches which augment UCP2 expression in vascular endothelial cells aid in preventing the early stage development and progression of DR.
    No preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: High mobility group box 1 (HMGB1) epxression has been found in the inflammatory microenvironment of fractures. It is well known that HMGB1 acts as a chemoattractant for mesenchymal stem cells (MSCs); however, the effects of HMGB1 on MSC migration and osteoblastic differentiation, and the signaling pathways involved in these effects, have not yet been elucidated. In this study, we aimed to investigate these effects, as well as the signaling mechanisms involved, using in vitro models. We found that HMGB1, in varying concentrations, promoted the osteoblastic differentiation of MSCs, the synthesis of receptor for advanced glycation end products (RAGE) and Toll-like receptor (TLR)2/4, and the activation of the p38 mitogen-activated protein kinase (MAPK) and nuclear factor‑κB (NF‑κB) signaling pathways. Subsequently, we cultured the MSCs in the appropriate concentration of HMGB1, and determined the signaling pathways involved in the effects of HMGB1 on MSC migration and differentiation, using receptor neutralizing antibodies and signaling pathway inhibitors. From the results of this study, we concluded that HMGB1 promotes MSC migration through the activation of the p38 MAPK signaling pathway, and also promotes MSC differentiation by binding to TLR2/4 and activating the p38 MAPK signaling pathway. These findings elucidate the mechanisms underlying the effects of HMGB1 in the fracture microenvironment, which may provide a theoretical basis for the development of improved clinical treatments for fractures.
    No preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension impairs the morphological and functional integrity of circulation. Previous research has shown that the loss of endothelial cells (ECs) is a common event in many cardiovascular diseases. p120 catenin (p120ctn) plays an important role in the regulation of inflammatory responses in ECs. However, the functional significance of p120ctn in angiotensin II (AngII)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) had not previously received much scholarly attention. In the present study, using western blot analysis and RT-PCR, we found that AngII-induced cell apoptosis was correlated with a significant decrease in p120ctn expression. The effect of AngII on cell viability was measured by CCK-8 assay. Knockdown of p120ctn with small hairpin RNA (shRNA) increased AngII-induced apoptosis of HUVECs, as demonstrated by Annexin V/PI staining and flow cytometric analysis. Knockdown of p120ctn with shRNA also increased cytochrome c release into the cytoplasm, and cleaved caspase-3 and -9 protein expression. These were accompanied by a decrease in the Bcl-2/Bax ratio (Bcl-2 and Bax protein expression were measured by western blot analysis), and in mitochondrial membrane potential, as measured using JC-1. Overexpression of p120ctn with adenovirus produced opposite effects. In the present study, we demonstrated that p120ctn attenuated AngII‑induced apoptosis of HUVECs through the mitochondria-dependent pathway, suggesting that p120ctn plays a critical role in protecting ECs against apoptosis during hypertension.
    No preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post‑menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase Ⅱ (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis.
    Preview · Article · Feb 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arginine adenosine diphosphate (ADP)-ribosyl-transferase 1 (ART1) is known to play an important role in many physiological and pathological processes. Previous studies have demonstrated that ART1 promotes proliferation, invasion and metastasis in colon carcinoma. However, it was unclear whether ART1 is involved in angiogenesis in cases of colorectal cancer (CRC). In the present study, lentiviral vector‑mediated ART1‑cDNA or ART1-shRNA were transfected into LoVo cells, and the LoVo cells transfected with ART1-cDNA or ART1-shRNA were co-cultured with human umbilical vein endothelial cells (HUVECs) to determine the influence of ART1 on HUVECs. The proliferation, migration and angiogenesis of HUVECs were monitored using a cell counting kit-8 assay, a Transwell migration assay and immunohistochemical analysis in intrasplenic allograft tumors, respectively. Hypoxia‑inducible factor 1-α (HIF-1α), total (t-)Akt, phosphorylated (p-)Akt, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression levels were detected via western blot analysis. Our results revealed that HUVECs which were co-cultured with ART1-cDNA LoVo cells showed higher proliferation, migration and angiogenic abilities, but a reduction was noted in those cultured with ART1-shRNA LoVo cells; p-Akt, HIF-1α, VEGF and bFGF expression was increased in HUVECs cultured with ART1‑cDNA-transfected LoVo cells, but reduced in ART1-shRNA-transfected LoVo cells. In a mouse xenograft model, we noted that the tumor microvessel density (MVD) was significantly increased in intrasplenic transplanted ART1‑cDNA CT26 tumors but decreased in intrasplenic transplanted ART1‑shRNA tumors. These data suggest that ART1 promoted the expression of HIF-1α via the Akt pathway in tumor cells. It also upregulated VEGF and bFGF and enhanced angiogenesis in HUVECs. Thus, we suggest that ART1 plays an important role in the invasion of CRC cells and the metastasis of CRC.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia/reoxygenation (H/R) is a critical factor in the pathogenesis of tissue injury following myocardial infarction (MI) which can lead to tissue damage and pathological remodeling. Therefore, it is necessary to try and prevent myocardial H/R injury in order to optimize the treatment of MI. This study aimed to explore the functions and molecular mechanisms of action of high mobility group box 1 (HMGB1) and its role in H/R injury to H9c2 cells. The mRNA expression of levels genes were detected by RT-qPCR. The protein levels were examined by western blot analysis. The Beclin 1 expression level was further determined by immunocytochemistry (ICC). In addition, an HMGB1 overexpression vector and a shRNA lentiviral vector were constructed in order to induce the overexpression and silencing of HMGB1, respectively. The apoptotic rate of the H9c2 cells was determined by flow cytometry. The expression of miR-210 was markedly increased following the exposure of the cells to H/R, thus indicating that the cell model of H/R injury was successfully established. In addition, an in vivo model of MI was also created using rats. The mRNA and protein level of HMGB1 was found to be upregulated in the myocardial tissue of the rats with MI and in the H9c2 cells subjected to H/R injury. HMGB1 promoted apoptosis by increasing the expression of cleaved caspase-3 and the apoptotic rate of the cells, while decreasing the expression of Bcl-2 during H/R in the H9c2 cells. HMGB1 promoted epithelial-to-mesenchymal transition (EMT) by reducing the protein level of the epithelial marker, E-cadherin, while increasing the expression of the mesenchymal markers, vimentin and fibroblast-specific protein (FSP), during H/R in the H9c2 cells. HMGB1 induced the apoptosis of the H9c2 cells and EMT following H/R in association with the induction of autophagy. HMGB1 induced autophagy by upregulating the expression of discoidin domain receptor 1 (DDR1) and downregulating the phosphorylation levels of mammalian target of rapamycin (mTOR). In conclusion, the findings of our study suggest that HMGB1 promotes apoptosis and EMT in association with the induction of autophagy through the upregulation of the expression of DDR1 and the downregulation of the phosphorylation of mTOR following H/R injury in H9c2 cells.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance. The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function. The aim of the present study was to investigate the role of FoxO1 in CB1R-mediated insulin resistance through the dysregulation of mitochondrial function in the livers of mice with high-fat diet (HFD)-induced obesity. For this purpose, male C57BL/6 mice were randomly assigned to groups and either fed a standard diet (STD), a HFD, or a HFD with 1-week treatment of the CB1R inverse agonist, AM251, at 1 or 5 mg/kg. For in vitro experiments, AML12 hepatocytes were incubated with FoxO1 siRNA prior to challenge with arachidonyl-2'-chloroethylamide (ACEA) or a high concentration of free fatty acids (HFFA). Plasma parameters were analyzed using colorimetric methods. Liver histopathology and hepatic status markers were examined. The HFD-fed mice exhibited an increase in CB1R levels in the liver. Moreover, in response to increased hepatic oxidative stress, the HFD-fed mice also displayed hepatic mitochondrial dysfunction, as indicated by the decreased mRNA levels of carnitine palmitoyltransferase-1 (CPT-1), mitochondrial transcription factor A (TFAM), nuclear respiratory factor-1 (NRF-1) and citrate synthase. On the contrary, these effects in the HFD-fed mice were reversed by treatment with 5 mg/kg AM251. The administration of AM251 suppressed the induction of FoxO1, phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) expression in the livers of the mice fed a HFD by enhancing the phosphorylation of insulin signaling cascades thus, further lowering the high level of the homeostatic model assessment of insulin resistance (HOMA‑IR) index. In our in vitro experiments, transfection with FoxO1 siRNA prevented the HFFA- and ACEA-induced decrease in the gene expression of mitochondrial biogenesis-related factors, and abrogated the HFFA- and ACEA-induced increase in PEPCK and G6Pase expression. Taken together, our findings suggest that the anti-insulin resistance effect of AM251, which leads to an improvement of mitochondrial function in hepatic steatosis, is mediated through FoxO1.
    No preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several genetic variants have been associated with early repolarization syndrome (ERS). However, the lack of functional validations of the mutant effects has limited the interpretation of genetic tests. In the present study, we identified and characterized a novel sodium channel, voltage gated, type V alpha subunit (SCN5A) mutation that was associated with ERS. A 67-year-old male proband suffering from recurrent syncope underwent a documented electrocardiogram (ECG) for polymorphic ventricular tachycardia (VT). It was noted that baseline 12-lead ECG exhibited a predominantly elevated ST-segment which mimicked acute myocardial ischemia in lead V2-V6, and the ECG also demonstrated J waves in lead Ⅱ, Ⅲ, aVF and V2-V6. Using genetic analysis, we noted that the proband carried a novel heterozygous missense mutation of A1055G in the SCN5A gene. Whole-cell configuration of patch-clamp analysis revealed that the mutation significantly decreased peak sodium current (INa) density and shifted the steady-state inactivation curve of INa to a more negative potential. Confocal imaging suggested that in the mutant channel a defect of protein expression both on the cell membrane and in cytoplasm was present. The present study demonstrated that a novel heterozygous missense mutation of A1055G in SCN5A led to 'loss-of function' of the sodium channels, and we suggest that it accounts for the arrhythmogenic characteristics of ERS.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that the SMB-S15 cell line was originally established by cultures from the brains of mice affected by the Chandler scrapie strain, and this cell line may express PrPSc permanently. However, the infectivity of the S15-derived prions on experimental animals has not yet been well documented. In the present study, the cell lysates of SMB-S15 were intracerebrally inoculated into three different strains of mice, namely C57BL/6, Balb/c and CD1. Prion protein (PRNP) gene sequencing revealed the same encoded PrP proteins in the sequences of amino acids in the three strains of mice, in addition to a synonymous single nucleotide polymorphism (SNP) in CD1 mice. All infected mice developed typical experimental transmissible spongiform encephalopathies (TSEs) approximately six months post-infection. The clinical features of three infected mice were comparable. The pathogenic characteristics, such as the electrophoretic and glycosylation profiles and proteinase K (PK) resistance of PrPSc molecules, as well as the neuropathological characteristics, such as spongiform vacuolation, PrPSc deposits in cortex regions, astrogliosis and activated microglia, were also similar in all three strains of infected mice. However, PrPSc deposits in the cerebellums of CD1 mice were significantly fewer, which was linked with the observation that lower numbers of CD1 mice presented cerebellum-associated symptoms. Successive inoculation of the individual strains of mice with brain homogenates from the infected mice also induced typical experimental scrapie. The data in the present study thus confirm that the prion agent in SMB-S15 cells causes stable infectivity in different types of mice with distinct phenotypes after long-term propagation in vitro. The present study also provides further scrapie rodent models, which may be used in further studies.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia, as well as diabetes mellitus, has been shown to impair ATP-sensitive K+ (KATP) channels in human vascular smooth muscle cells. Hydrogen sulfide (H2S) is also known to be an opener of KATP channels. We previously demonstrated the cardioprotective effects exerted by H2S against high-glucose (HG, 35 mM glucose)-induced injury in H9c2 cardiac cells. As such, we hypothesized that KATP channels play a role in the cardioprotective effects of H2S against HG-induced injury. In this study, to examine this hypothesis, H9c2 cardiac cells were treated with HG for 24 h to establish a model of HG-induced insults. Our findings revealed that treatment of the cells with HG markedly decreased the expression level of KATP channels. However, the decreased expression of KATP channels was reversed by the treatment of the cells with 400 µM sodium hydrogen sulfide (NaHS, a donor of H2S) for 30 min prior to exposure to HG. Additionally, the HG-induced cardiomyocyte injuries, including cytotoxicity, apoptosis, oxidative stress and mitochondrial damage, were ameliorated by treatment with NaHS or 100 µM diazoxide (a mitochondrial KATP channel opener) or 50 µM pinacidil (a non-selective KATP channel opener) for 30 min prior to exposure to HG, as indicated by an increase in cell viability, as well as a decrease in the number of apoptotic cells, the expression of cleaved caspase-3, the generation of reactive oxygen species (ROS) and the dissipation of mitochondrial membrane potential (MMP). Notably, treatment of the H9c2 cardiac cells with 100 µM 5-hydroxydecanoic acid (5-HD, a mitochondrial KATP channel blocker) or 1 mM glibenclamide (Gli, a non-selective KATP channel blocker) for 30 min prior to treatment with NaHS and exposure to HG significantly attenuated the above-mentioned cardioprotective effects exerted by NaHS. Notably, treatment of the cells with 500 µM N-acetyl‑L‑cysteine (NAC, a scavenger of ROS) for 60 min prior to exposure to HG markedly reduced the HG-induced inhibitory effect on the expression of KATP channels. Taken together, our results suggest that KATP channels play an important role in the cardioprotective effects of exogenous H2S against HG-induced injury. This study also provides novel data demonstraring that there is an antagonistic interaction between ROS and KATP channels in HG-exposed H9c2 cardiac cells.
    No preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, Par1-4. Pars mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of Pars by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 Pars originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only Par1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these Pars evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate Par family.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to better understand the mechanisms by which chondrocytes respond to mechanical stimulation, ATDC5 mouse embryonic carcinoma cells were induced to differentiate into chondrocytes and then exposed to mechanical loading. To specifically elucidate the role of this pathway, the localization and expression of proteins involved in the Wnt/β-catenin signaling pathway were observed. Chondrogenic-differentiated ATDC5 cells were exposed to a 12% cycle tension load for 1, 2, 4, or 8 h. At each time point, immunofluorescence staining, western blot analysis, and qPCR were used to track the localization of β-catenin and glycogen synthase kinase-3β (GSK-3β) expression. In addition, the mRNA expression of Wnt3a, disheveled homolog 1 (Dvl-1), GSK-3β, and collagen type II were also detected. Activation of the Wnt/β-catenin signaling pathway was investigated in cells treated with Dickkopf-related protein 1 (DKK-1). β-catenin and GSK-3β protein expression increased initially and then decreased over the mechanical loading period, and the corresponding mRNA levels followed a similar trend. After application of the inhibitor DKK-1, Wnt/β‑catenin signaling was suppressed, and the mRNA expression of collagen II was also reduced. Thus, stimulation of chondrocytes with mechanical strain loading is associated with the translocation of active β-catenin from the cytoplasm to the nucleus.
    No preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress plays an important role in the pathogenesis of various liver diseases. Safflower yellow B (SYB) has been reported to protect the brain against damage induced by oxidative stress; however, whether SYB can also protect hepatocytes from oxidative stress remains unknown. In the present study, to determine whether pre-treatment with SYB reduces hydrogen peroxide (H2O2)‑induced oxidative stress in HepG2 cells, we investigated H2O2-induced oxidative damage to HepG2 cells treated with or without SYB. Cell viability was measured by MTT assay and cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay. The activities of the antioxidant enzymes, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were determined using respective kits. Intracellular reactive oxygen species (ROS) accumulation in the HepG2 cells was monitored using the fluorescent marker, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). Cell apoptosis was evaluated by determining the activity of caspase-3 and by Annexin V/propidium iodide (PI) double staining. Protein expression levels were measured by western blot analysis, and the levels of related cellular kinases were also determined. H2O2 induced pronounced injury to the HepG2 cells, as evidenced by increased levels of malondialdehyde (MDA) and ROS, the decreased activity of SOD and GSH-Px, the increased activitation of caspase-3 and cell apoptosis, and the loss of mitochondrial membrane potential. SYB significantly inhibited the damaging effects of H2O2, indicating that it protected the cells against H2O2-induced oxidative damage. Moreover, pre-treatment with SYB increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1) which are peroxiredoxins. SYB also significantly increased the phosphorylation of AKT. However, this inductive effect was blunted in the presence of the AKT inhibitor, LY294002. The findings of our study suggest that the activation of the AKT/Nrf2 pathway is involved in the cytoprotective effects of SYB against oxidative stress. Our findings provide new insight into the cytoprotective effects of SYB and the possible mechanisms underlying these effects. Thus, SYB may prove to be of therapeutic value for the treatment of various liver diseases.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Baicalein, a flavonoid originally obtained from the roots of Scutellaria baicalensis Georgi, has been reported to possess various biological properties. Although several studies have demonstrated the anti-oxidative activity of baicalein, its neuroprotective mechanisms have not been clearly established. The present study aimed to detect the effects of baicalein against hydrogen peroxide (H2O2)-induced neuronal damage in C6 glial cells and to investigate the molecular mechanisms involved in this process. The results demonstrated that baicalein effectively inhibited H2O2-induced growth and reactive oxygen species (ROS) generation. We noted that Baicalein also attenuated the H2O2‑induced formation of comet tail, phosphorylation of p-γH2A.X, loss of mitochondrial membrane potential (MMP or ΔΨm), and changes to apoptosis‑related protein expression, which suggests that it can prevent H2O2‑induced cellular DNA damage and apoptotic cell death. Furthermore, treatment with baicalein effectively induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as heme oxygenase-1 (HO-1) and thioredoxin reductase 1 (TrxR1) in a concentration and time-dependent manner. Moreover, the protective effects of baicalein against H2O2‑induced DNA damage and apoptosis were abolished by zinc protoporphyrin (ZnPP) IX, a HO-1 inhibitor, and auranofin, a TrxR inhibitor. In addition, we noted that the cytoprotective effects of baicalein were attenuated by transient transfection with Nrf2-specific small interfering RNA (siRNA). The findings of our present study suggest that baicalein enhances cellular antioxidant defense capacity through the inhibition of ROS generation and the activation of the Nrf2 signaling pathway, thus protecting C6 cells from H2O2-induced neuronal damage.
    No preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection is a significant public health problem worldwide. However, there is still a lack of effective therapeutic drugs which could be used for the interruption of the disease. In the present study, for the first time, we reported that a synthesized peptide, which was synthesized by solid phase peptide synthesis and derived from the amino acids 710 to 725 of the HCV E2, functioned as an inhibitor of HCV infection. Using an MTT assay, we found that the E2 (710-725) peptide exerted no specific cytotoxicity on Huh7.5 cells and primary human hepatocytes (pHH). Interestingly, E2 (710-725) peptide blocked the entry of cell culture‑derived HCV (HCVcc) into hepatocytes. Moreover, it suppressed HCV RNA replication and HCV-specific protein NS3 and NS5B expression, as shown by western blot analysis. Moreover, E2 (710-725) markedly attenuated the inhibitory effect of HCVcc on hepatocyte viability. Additionally, a co-immuninoprecipitation assay demonstrated that E2 (710-725) abrogated the interaction between CD81 and HCV E2 envelope protein through competitive binding of CD81. Overall, our results revealed that the synthesized peptide E2 (710-725) blocked CD81‑mediated HCV entry and possessed the potential to treat HCV infection. Thus, the present study provided novel insights into the development of new drugs for preventing HCV infection.
    No preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, a new type of DSPE-PEG2000 polymeric liposome for the brain-targeted delivery of poorly water-soluble anticancer drugs was successfully prepared and characterized. The nanoparticles were formed by the self-assembly of an amphiphilic polymer consisting of hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE‑PEG2000). These nanoliposomes served as a safe delivery platform for the simultaneous delivery of quercetin (QUE) and temozolomide (TMZ) to rat brains. The 2-in-1 PEG2000‑DSPE nanoliposomes containing QUE and TMZ (QUE/TMZ-NLs) were rapidly taken up by the U87 glioma cells in vitro, whereas at the same concentrations, the amounts of the free drugs taken up were minimal. The QUE/TMZ-NLs showed an enhanced potency in the U87 cells and the TMZ-resistant U87 cells (U87/TR cells), possibly due to the high intracellular drug concentration and the subsequent drug release. In vivo biodistribution experiments revealed a significant accumulation of QUE/TMZ-NLs in the brain, with significantly increased plasma concentrations of QUE and TMZ, as well as delayed clearance in our rat model of glioma. The results were not so significant for the QUE-loaded nanoliposomes (QUE-NLs) and free TMZ. The findings of our study establish the DSPE‑PEG2000 polymeric liposome as a novel and effective nanocarrier for enhancing drug delivery to brain tumors.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) as a serious diseases with high mortality and is considered a threat to human health and life. A number of studies have focused on the treatment and prevention of lung injury. However, the molecular mechanisms responsible for the development of lung injury are not yet fully understood, and this has impeded the development of effective drugs and treatment strategies. Hence, in the present study, mice with lipopolysaccharide (LPS)‑induced ALI were used as a model to investigate the crosstalk between the CX3CL1-CX3CR1 axis and the nuclear factor (NF)-κB signaling pathway in the process of lung injury. CX3CL1-knockout (CX3CL1-KO or CX3CL1-/-) mice were used to examine the role of the CX3CL1-CX3CR1 axis in LPS-induced lung injury. We used baicalin, a natural product, to investigate its anti-inflammatory effects and its protective effects against lung injury. Western blot analysis, reverse transcription-quantitavie PCR (RT-qPCR), immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and the analysis of biochemical indicators were used to determine the key signaling pathway involved in the development of lung injury. The results indicated that, on the one hand, baicalin exerted potent anti-inflammatory effects by inhibiting the activation of the CX3CL1-CX3CR1 axis and NF-κB, thus preventing the the crosstalk between the CX3CL1‑CX3CR1 axis and NF-κB pathway. In addition, the phosphorylation of AKT, which was significantly induced by LPS-induced ALI through the CX3CL1-CX3CR1 axis, was inhibited by treatment with baicalin. On the other hand, we further investigated the role of the CX3CL1-CX3CR1 axis in lung injury. We determined the diffrences in the expression levels of CX3CR1 between wild-type (WT) and CX3CL1-/- mice in order to establish its association with lung injury. Our results indicated that CX3CL1 may be the central and major indicator in the process of lung injury, which mediates the CX3CR1 receptor to activate AKT and further promote NF-κB activation. These findings demonstrate that the crosstalk between the CX3CL1-CX3CR1 axis and NF-κB signaling pathway plays a direct role in LPS-induced lung injury. The inhibition of the activation of the CX3CL1-CX3CR1 axis may thus suppress the development of ALI. In addition, baicalin inhibited the crosstalk between the CX3CL1-CX3CR1 axis and NF-κB pathway in mice with LPS-induced ALI. Thus, treatment with baicalin may be a potential therapeutic strategy for ALI.
    Preview · Article · Jan 2016 · International Journal of Molecular Medicine