Ecotoxicology and Environmental Safety

Publisher: International Society of Ecotoxicology and Environmental Safety; International Academy of Environmental Safety, Elsevier

Current impact factor: 2.76

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.762
2013 Impact Factor 2.482
2012 Impact Factor 2.203
2011 Impact Factor 2.294
2010 Impact Factor 2.34
2009 Impact Factor 2.133
2008 Impact Factor 2.59
2007 Impact Factor 2.014
2006 Impact Factor 2
2005 Impact Factor 2.022
2004 Impact Factor 1.282
2003 Impact Factor 0.983
2002 Impact Factor 1.189
2001 Impact Factor 1.252
2000 Impact Factor 1.06
1999 Impact Factor 1.276
1998 Impact Factor 0.731
1997 Impact Factor 0.959
1996 Impact Factor 0.914
1995 Impact Factor 0.939
1994 Impact Factor 1.29
1993 Impact Factor 0.87
1992 Impact Factor 0.684

Impact factor over time

Impact factor

Additional details

5-year impact 2.88
Cited half-life 6.30
Immediacy index 0.42
Eigenfactor 0.02
Article influence 0.65
Other titles Ecotoxicology and environmental safety (Online), Ecotoxicology and environmental safety, Environmental research., EES
ISSN 1090-2414
OCLC 36967219
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: While the concentrations of heavy metals in pore water provide important information about their bioavailability, to date few studies have focused on this topic. In this study, pore water in river sediments collected from nine sampling sites (S1–S9) was examined to determine the concentrations, fluxes, and toxicity of heavy metals in the Fuyang River. The results showed that the average concentrations of Cr, Ni, Cu, As, Zn, and Pb in pore water were 17.06, 15.97, 20.93, 19.08, 43.72, and 0.56 μg L−1, respectively; these concentrations varied as the pore water depth increased. The diffusive fluxes of Cr, Ni, Cu, As, Zn, and Pb were in the following range: (−0.37) to 3.17, (−1.37) to 2.63, (−4.61) to 3.44, 0.17–6.02, (−180.26) to 7.51, and (−0.92) to (−0.29) μg (m2 day)−1, respectively. There was a potential risk of toxicity from Cu to aquatic organisms, as indicated by a value of the Interstitial Water Criteria Toxic Units that exceeded 1.0. Values of the Nemeraw Index were 2.06, 0.48, 0.11, 0.20, 1.11, 1.03, 0.99, 0.88, and 0.89 from S1 to S9, respectively. Only S1 was moderately polluted by heavy metals in pore water.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0 mg kg−1 simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8 mg kg−1 to 8.0 mg kg−1, simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: A great deal of literature is available regarding the environmental and ecological effects of rare earth element pollution on plants. These studies have shown that excess lanthanum (La) (III) in the environment can inhibit plant growth and even cause plant death. Moreover, inhibition of plant photosynthesis is known to be one of the physiological bases of these damages. However, the mechanism responsible for these effects is still unclear. In this study, the mechanism of La(III)-induced damage to plant photosynthesis was clarified from the viewpoint of the chloroplast ultrastructure, the contents of chloroplast mineral elements and chlorophyll, the transcription of chloroplast ATPase subunits and chloroplast Mg2+–ATPase activity, in which rice was selected as a study object. Following treatment with low level of La(III), the chloroplast ultrastructure of rice was not changed, and the contents of chloroplast mineral elements (Mg, P, K, Ca, Mn, Fe, Ni, Cu, and Zn) increased, but the chlorophyll content did not change significantly. Moreover, the transcription of chloroplast ATPase subunits, chloroplast Mg2+–ATPase activity, the net photosynthetic rate and growth indices increased. Following treatment with high levels of La(III), the chloroplast ultrastructure was damaged, chloroplast mineral elements (except Cu and Zn) and chlorophyll contents decreased, and the transcription of chloroplast ATPase subunits, chloroplast Mg2+–ATPase activity, the net photosynthetic rate and growth indices decreased. Based on these results, a possible mechanism of La(III)-induced damage to plant photosynthesis was proposed to provide a reference for scientific evaluation of the potential ecological risk of rare earth elements in the environment.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50 mg U g−1 dry weight from 80 or 160 mg L−1 U within 48 h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lansium domesticum peel (LDP), a waste material generated from the fruit consumption, was evaluated as a biosorbent for nickel removal from aqueous media. The effects of dosage, contact time, initial pH, initial concentration and temperature on the biosorption process were investigated in batch experiments. Equilibrium data were fitted by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models using nonlinear regression method with the best-fit model evaluated based on coefficient of determination (R2) and Chi-square (χ2). The best-fit isotherm was found to be the Langmuir model exhibiting R2 very close to unity (0.997–0.999), smallest χ2 (0.0138–0.0562) and largest biosorption capacity (10.1 mg/g) at 30 °C. Kinetic studies showed that the initial nickel removal was rapid with the equilibrium state established within 30 min. Pseudo-second-order model was the best-fit kinetic model indicating the chemisorption nature of the biosorption process. Further data analysis by the intraparticle diffusion model revealed the involvement of several rate-controlling steps such as boundary layer and intraparticle diffusion. Thermodynamically, the process was exothermic, spontaneous and feasible. Regeneration studies indicated that LDP biosorbent could be regenerated using hydrochloric acid solution with up to 85% efficiency. The present investigation proved that LDP having no economic value can be used as an alternative eco-friendly biosorbent for remediation of nickel contaminated water.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triclosan (TCS) is an antimicrobial and is an aquatic contaminant. Little is known on aquatic toxicity of TCS. Rotifers are common members of freshwater zooplankton. In this study, Brachionus calyciflorus was chosen as a test organism to assess the acute and complete life cycle toxicity of TCS in this study. The acute toxicity results showed that the 24-h median lethal concentration (LC50) of TCS was 345±0.11 μg/L (95% confidence limits of 212–564 µg/L). Reproductive bioassays demonstrated that TCS could inhibit the population growth rate at the concentration higher than 1.0 μg/L. Resting egg production encompasses the full life-cycle of rotifer, and thus its hatching rate were explored to assess the toxicity of TCS towards rotifer population at TCS concentrations ranging from 0.1 to 200 µg/L at two different growth periods. When resting eggs were exposed to TCS during the formation period, 0.1 and 1.0 µg/L of TCS increased the hatching rate from 0.402 to 0.502, and 0.475, respectively. Exposure to 100 and 200 µg/L of TCS reduced the hatching rate to 0.309 and 0.275, respectively. When the resting eggs were formed in the control medium and hatched in medium with TCS, their hatching rates were not significantly influenced by TCS, except that 200 µg/L of TCS decreased the hatching rate from 0.402 to 0.34 significantly. The effects of TCS exposure on the hatching rate during the formation period were greater than those during the resting egg hatching period.
    No preview · Article · May 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of novel nanoparticles should always be accompanied by a comprehensive assessment of risk to human health and to ecosystem. Application of in silico models is encouraged by regulatory authorities to fill the data gaps related to the properties of nanoparticles affecting the environment and human health. Interspecies toxicity correlations provide a tool for estimation of contaminant's sensitivity with known levels of uncertainty for a diverse pool of species. We propose here first interspecies cytotoxicity correlation models between Escherichia coli (prokaryotic system) and human keratinocyte cell line (HaCaT) (eukaryotic system) to assess the discriminatory features for cytotoxicity of metal oxide nanoparticles. The nano-QTTR models can be employed for extrapolating cytotoxicity to E. coli and human keratinocyte cell line (HaCaT) for metal nanoparticles when the data for the other species are available. Informative illustrations of the contributing mechanisms of toxic action of the metal oxide nanoparticles to the HaCaT cell line as well as to the E. coli are identified from the developed nano quantitative toxicity–toxicity relationship (nano-QTTR) models.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the adverse effects of fluoride exposure on embryos and larvae of Rana chensinensis. Survival, morphological abnormalities, growth and development, time to metamorphosis and size at metamorphic climax of R. chensinensis were examined. Our results showed that embryos malformation occurred in all fluoride treatments. Morphological abnormalities of embryos are characterized by axial flexures, the extrusion of fin axis, edema, and ruffled dorsal and ventral fin. Additionally, 4.1mg F(-)/L and above could significantly inhibit embryos growth and development. On day 15, total length and weight of tadpole were significantly lower in 19.6 and 42.4mg F(-)/L treatments compared to control. However, significant reductions in total length and weight were observed only at 42.4mg F(-)/L on day 30. Moreover, significant metamorphic delay and decrease in the size at metamorphic climax were found in larvae exposed to 42.4mg F(-)/L. Taken together, embryos of R. chensinensis are more vulnerable to fluoride exposure than their tadpoles. Our results suggested that the presence of high concentrations fluoride might increase mortality risk and a reduction in juvenile recruitment in the field by increasing embryos malformation, delaying metamorphosis and decreasing size at metamorphosis.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to assess the potential impact on soil porewater, surface and groundwater from the beneficial application of organic wastes to soil, using their eluates and acute bioassays with aquatic organisms and plants: luminescence inhibition of Vibrio fischeri (15 and 30 min), Daphnia magna immobilization (48 h), Thamnocephalus platyurus survival (24 h), and seed germination of Lolium perenne (7 d) and Lactuca sativa (5 d). Some organic wastes’ eluates promoted high toxic responses, but that toxicity could not be predicted by their chemical characterization, which is compulsory by regulatory documents. In fact, when organisms were exposed to the water-extractable chemical compounds of the organic wastes, the toxic responses were more connected to the degree of stabilization of the organic wastes, or to the treatment used to achieve that stabilization, than to their contaminant load. That is why the environmental risk assessment of the use of organic wastes as soil amendments should integrate bioassays with eluates, in order to correctly evaluate the effects of the most bioavailable fraction of all the chemical compounds, which can be difficult to predict from the characterization required in regulatory documents. According to our results, some rapid and standardized acute bioassays can be suggested to integrate a Tier 1 ecotoxicological evaluation of organic wastes with potential to be land applied, namely luminescence inhibition of V. fischeri, D. magna immobilization, and the germination of L. perenne and L. sativa.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization.Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction.The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution.To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tebuconazole is an effective chiral fungicide, and previous studies have demonstrated that tebuconazole enantiomers exhibit enantioselective toxicity to non-target aquatic organisms. Thus, the aim of the present study was to investigate the chiral bioaccumulation behavior of tebuconazole in zebrafish (Danio rerio). Two exposure concentrations (0.107 and 1.07mg/L) of tebuconazole were used. The uptake experiments lasted for 8 days, and subsequently, the zebrafish were transferred to another clean tank containing water without tebuconazole for depuration experiments (up to 14 days). A significant trend in enantioselective bioaccumulation was observed in these zebrafish with the preferential accumulation of (-)-R-tebuconazole at two dose levels. The results of the depuration experiments indicated that the degradation of (-)-R-tebuconazole in zebrafish was slower than that of (+)-S-tebuconazole. The BCFk values for (+)-S-tebuconazole and (-)-R-tebuconazole in a low dose of this chemical were 11.22 and 16.25, respectively, while at a high dose, these values were 9.79 and 10.31, respectively. The enantiomer fraction of tebuconazole in zebrafish and water ranged from 0.31-0.49. Hence, future research should focus on the fate of tebuconazole in the aquatic environment at the enantiomer levels.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Incidental oral ingestion is the main exposure pathway by which human intake contaminants in both soil and indoor dust, and this is especially true for children as they frequently exhibit hand-to-mouth behaviour. Research on comprehensive health risk caused by incidental ingestion of both soil and indoor dust is limited. The aims of this study were to investigate the arsenic concentration and to characterize the health risks due to arsenic (As) exposure via soil and indoor dust in rural and urban areas of Hubei province within central China. Soil and indoor dust samples were collected from schools and residential locations and bioaccessibility of arsenic in these samples was determined by a simplified bioaccessibility extraction test (SBET). The total arsenic content in indoor dust samples was 1.78-2.60 times that measured in soil samples. The mean As bioaccessibility ranged from 75.4% to 83.2% in indoor dust samples and from 13.8% to 20.2% in soil samples. A Pearson's analysis showed that As bioaccessibility was significantly correlated with Fe and Al in soil and indoor dust, respectively, and activity patterns of children were utilised in the assessment of health risk via incidental ingestion of soil and indoor dust. The results suggest no non-carcinogenic health risks (HQ<1) or acceptable carcinogenic health risks (1×10(-6)<CR<1×10(-4)) in all studied locations. Indoor activities comprised between 64.0% and 92.7% of the total health risk incurred during daily indoor and outdoor activities. The HQ and CR values for children in urban areas were 1.59-1.95 times those for children in rural areas. The HQ and CR values for children three to five years of age were 1.40-1.47 times those for children six to nine years of age. The health risk accounting for bioaccessibility was only 50.8-59.8% of that obtained without consideration of bioaccessibility.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: The efficiency of xylene removal from contaminated air by thirteen perennial plants was studied. The results showed that Bougainvillea buttiana had the highest xylene removal efficiency. Different parts of B. buttiana such as stems, epicuticular waxes, and plant stomata (including microorganism-associated plant leaves) can uptake xylene 53.1±1.9%, 32.3±0.9, and 14.6±0.0%, respectively. Metabolite products found in treated plants may result from stress or defense compounds triggered by exposure to xylene. Moreover, possible degradation products in B. buttiana stems were analyzed after treatment with xylene at 100 ppm. Various metabolites in B. buttiana stems such as 2,6-dimethoxyphenol, 4-hydroxy-3,5-dimethoxy benzoic acid, 1-isopropyl-4-methylbenzene, p-tolualdehyde, 2,5-dimethoxy-4-methylbenzaldehyde, 2,4-dihydroxy-2,5-dimethyl-3(2H)-furanone, 3-methyl-2-butenal, dihydroxy acetone, propanedial, and many organic acids are related to the xylene degradation pathway. In addition, microorganism-associated B. buttiana leaves especially Enterobacter cloacae LSRC11, Staphylococcus sp. A1 and Pseudomonas aeruginosa enhanced the plant resulting in quicker xylene removal.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EFS), the Geo-accumulation index (Igeo), and the potential ecological risk coefficient (Er(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the intertidal area, the interactions between anthropogenic contaminants and natural variations (biotic and abiotic factors) are poorly understood. Consequently, there is a great need for new assessment procedures to characterize the biological responses occurring in organisms from this extreme environment. Considering the intrinsic inter-individual variations among organisms from a single population, it is important to propose new methods that address this variability, by validating a sampling strategy in target groups of organisms, encompassing seasonal fluctuations. This strategy must however be less invasive than traditional methods, avoiding the mandatory sacrifice of the sampled organisms. By doing so, it is also possible to increase the ecological relevance of obtainable data, and contribute to minimize damage to endangered species. The main purpose of the present study was to assess the influence of seasonal variations in the responses elicited by anthropogenic compounds on a marine crustacean species, by using a biomarker-based approach. According to this purpose, the seasonal variations in key physiological responses (biomarkers) were investigated in the crustacean Pollicipes pollicipes from the Northern coast of Portugal. Biomarkers used for this purpose were the activity of the phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), the activity of cholinesterases (ChEs), and the levels of lipid peroxidation (TBARS). All biomarkers were quantified in distinct tissues (such as cirri, and peduncle) and haemolymph (a non-destructive source of biological samples). The glycogen content in peduncle tissue, and the variation in haemocyte number in haemolymph were also analyzed. Samples were collected monthly, during a year, in Lavadores, located in the proximity of an estuarine area (Douro River). The results showed a seasonal pattern in all tested biomarkers. The results also showed a significant increase in GSTs activities, and in peroxidative damage, especially during warmer months. The lowest ChEs values were recorded during the rainy season. The results also showed a similar pattern among all tested tissues, validating the proposed use of the haemolymph as a source tissue for non-lethal sampling strategy for biomarker determinations. Glycogen content was apparently related to the reproductive cycle, with lower values being observed in spring and summer. Total haemocyte count (THC) increased during summer months. The results pointed to an influence of natural variations in the levels of biomarkers in P. pollicipes, highly dependent upon abiotic factors, a factor that must be considered when interpreting biological responses elicited by anthropogenic contaminants from the marine coastal environment. The validation of haemolymph as a non-lethal source tissue for the quantification of biomarkers was successfully attained, opening the possibility of less invasive and almost unlimited sampling in a small number of organisms.
    No preview · Article · Apr 2016 · Ecotoxicology and Environmental Safety