Restorative neurology and neuroscience (RESTOR NEUROL NEUROS)

Publisher: IOS Press

Journal description

The journal is interdisciplinary. Papers relating the plasticity and response of the nervous system to accidental of experimental injuries or in-terventions, transplantation, neurodegenerative disorders, and experimental strategies to improve regeneration or functional recovery will be considered for publication. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance, and interest to a multidisciplinary audience. Experiments on unanesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind "peer review" to editorial board members or outside reviewers.

Current impact factor: 2.49

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.49
2013 Impact Factor 4.179
2012 Impact Factor 2.929
2011 Impact Factor 2.51
2010 Impact Factor 3.349
2009 Impact Factor 3.714
2008 Impact Factor 1.978
2007 Impact Factor 1.415
2006 Impact Factor 2.862
2005 Impact Factor 1.825
2004 Impact Factor 1.412
2003 Impact Factor 1.623
2002 Impact Factor 0.836
2001 Impact Factor 0.678
2000 Impact Factor 0.911
1999 Impact Factor 0.5
1998 Impact Factor 1.196
1997 Impact Factor 1.117
1996 Impact Factor 0.56
1995 Impact Factor 0.915
1994 Impact Factor 1.435
1993 Impact Factor 2.609

Impact factor over time

Impact factor

Additional details

5-year impact 3.22
Cited half-life 5.90
Immediacy index 0.89
Eigenfactor 0.00
Article influence 0.95
Website Restorative Neurology and Neuroscience website
Other titles Restorative neurology and neuroscience (Online)
ISSN 0922-6028
OCLC 47094437
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

IOS Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author's personal website, institutional website or funder's website, including PubMed Central
    • Non-commercial use only
    • Publisher copyright and source must be acknowledged
    • Author's version can be used
    • Publisher's pdf can be used on institutional website, company website or funding agency website for a fee
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is extensive evidence for positive effects of sleep on motor learning in young individuals; however, the effects of sleep on motor learning in people with stroke and in healthy older individuals are not well understood. The aim of this systematic review was to quantify the association between sleep and procedural memory performance - a marker for motor learning - in healthy older people and people with stroke. After searches in PubMed, Medline and Embase fourteen studies, including 44 subjects after stroke and 339 healthy older participants were included. Overall, sleep was found to enhance motor performance in people after stroke in comparison to an equivalent time of wakefulness. In addition, although evidence is limited, sleep only enhanced motor performance in people after stroke and not in age-matched healthy older adults. In older adults the effect of a sleep intervention did - in general - not differ from equivalent periods of wakefulness. Tasks with whole hand or whole body movements could show significant changes. The results suggest a delayed retention effect after longer breaks including sleep, hinting towards a changed learning strategy as a result of aging. Current evidence for sleep dependent learning in people after stroke is promising, however sparse.
    No preview · Article · Oct 2015 · Restorative neurology and neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Freezing of gait (FOG) affects mobility and balance seriously. Few reports have investigated the effects of repetitive transcranial magnetic stimulation (rTMS) on FOG in Parkinson's disease (PD). We investigated the efficacy of high-frequency rTMS for the treatment of FOG in PD. Methods: Seventeen patients diagnosed with PD were recruited in a randomized, double-blinded, cross-over study. We applied high frequency rTMS (90% of resting motor threshold, 10 Hz, 1,000 pulses) over the lower leg primary motor cortex of the dominant hemisphere (M1-LL) for five sessions in a week. We also administered alternative sham stimulation with a two-week wash out period. The primary outcomes were measured before, immediately after, and one week after the intervention using the Standing Start 180. Turn Test (SS-180) with video analysis and the Freezing of Gait Questionnaire (FOG-Q). The secondary outcome measurements consisted of Timed Up and Go (TUG) tasks and the Unified Parkinson's Disease Rating Scale part III (UPDRS-III). Motor cortical excitability was also evaluated. Results: There were significant improvements in the step required to complete the SS-180 and FOG-Q in the rTMS condition compared to the sham condition, and the effects continued for a week. The TUG and UPDRS-III also showed significant ameliorations over time in the rTMS condition. The MEP amplitude at 120% resting motor threshold and intracortical facilitation also increased after real rTMS condition. Conclusions: High frequency rTMS over the M1-LL may serve as an add-on therapy for improving FOG in PD.
    No preview · Article · Aug 2015 · Restorative neurology and neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Purpose: Characterization of sedative, possible anticonvulsant, and protective effects of Acacetin-7-O-glucoside (7-ACAG). Methods: 7-ACAG was separated and its purity was analyzed. Its sedative and anti-seizure effects (1, 10, 20, and 40 mg/kg) were evaluated in male mice. Synaptic responses were acquired from area CA1 of hippocampal slices obtained from male Wistar rats. Rats were subjected to stereotaxic surgeries to allow Electroencephalographic (EEG) recordings. Functional recovery was evaluated by measuring the time rats spent in completing the motor task. Then the rats were subjected to right hemiplegia and administered 7-ACAG (40 mg/kg) 1 h or 24 h after surgery. Brains of each group of rats were prepared for histological analysis. Results: Effective sedative doses of 7-ACAG comprised those between 20 and 40 mg/kg. Latency and duration of the epileptiform crisis were delayed by this flavonoid. 7-ACAG decreased the synaptic response in vitro, similar to Gamma-aminobutyric acid (GABA) effects. The flavonoid facilitated functional recovery. This data was associated with preserved cytoarchitecture in brain cortex and hippocampus. Conclusions: 7-ACAG possesses anticonvulsive and sedative effects. Results suggest that GABAergic activity and neuroprotection are involved in the mechanism of action of 7-ACAG and support this compound’s being a potential drug for treatment of anxiety or post-operative conditions caused by neurosurgeries.
    Preview · Article · Aug 2015 · Restorative neurology and neuroscience

  • No preview · Article · Jun 2015 · Restorative neurology and neuroscience