Plant Cell Reports (PLANT CELL REP)

Publisher: Springer Verlag

Journal description

Plant Cell Reports will publish original short communications dealing with new advances concerning all aspects of research and technology in plant cell science plant cell culture and molecular biology including biochemistry genetics cytology physiology phytopathology plant regeneration genetic manipulations nucleic acid research

Current impact factor: 3.07

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 3.071
2013 Impact Factor 2.936
2012 Impact Factor 2.509
2011 Impact Factor 2.274
2010 Impact Factor 2.279
2009 Impact Factor 2.301
2008 Impact Factor 1.946
2007 Impact Factor 1.974
2006 Impact Factor 1.727
2005 Impact Factor 2.173
2004 Impact Factor 1.457
2003 Impact Factor 1.423
2002 Impact Factor 1.34
2001 Impact Factor 1.375
2000 Impact Factor 1.277
1999 Impact Factor 1.076
1998 Impact Factor 1.1
1997 Impact Factor 0.967
1996 Impact Factor 0.989
1995 Impact Factor 1.726
1994 Impact Factor 1.59
1993 Impact Factor 1.852
1992 Impact Factor 1.801

Impact factor over time

Impact factor

Additional details

5-year impact 2.89
Cited half-life 7.70
Immediacy index 0.44
Eigenfactor 0.01
Article influence 0.65
Website Plant Cell Reports website
Other titles Plant cell reports
ISSN 0721-7714
OCLC 8037527
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Abstract Calcium (Ca2+) plays important role in growth, development and stress tolerance in plants. Cellular Ca2+ homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca2+ chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca2+-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca2+-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca2+ homeostasis which in turn modulates ROS machinery providing indirect link between Ca2+ and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. Abstract The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3–17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message A GORK homologue K + channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. shows the functional conservation of the GORK channels among plant species. Abstract Guard cell K+ release through the outward potassium channels eventually enables the closure of stomata which consequently prevents plant water loss from severe transpiration. Early patch-clamp studies with the guard cells have revealed many details of such outward potassium currents. However, genes coding for these potassium-release channels have not been sufficiently characterized from species other than the model plant Arabidopsis thaliana. We report here the functional identification of a GORK (for Gated or Guard cell Outward Rectifying K+ channels) homologue from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. AmGORK was primary expressed in shoots, where the transcripts were regulated by stress factors simulated by PEG, NaCl or ABA treatments. Patch-clamp measurements on isolated guard cell protoplasts revealed typical depolarization voltage gated outward K+ currents sensitive to the extracelluar K+ concentration and pH, resembling the fundamental properties previously described in other species. Two-electrode voltage-clamp analysis in Xenopus lavies oocytes with AmGORK reconstituted highly similar characteristics as assessed in the guard cells, supporting that the function of AmGORK is consistent with a crucial role in mediating stomatal closure in Ammopiptanthus mongolicus. Furthermore, a single amino acid mutation D297N of AmGORK eventually abolishes both the voltage-gating and its outward rectification and converts the channel into a leak-like channel, indicating strong involvement of this residue in the gating and voltage dependence of AmGORK. Our results obtained from this anciently originated plant support a strong functional conservation of the GORK channels among plant species and maybe also along the progress of revolution.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Transgenic tall fescue plants expressing RNAi constructs of essential genes of Rhizoctonia solani were resistant to R. solani. Abstract Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species widely used for home lawns and on golf courses in North Carolina and other transition zone states in the US. The most serious and frequently occurring disease of tall fescue is brown patch, caused by a basidiomycete fungus, Rhizoctonia solani. This research demonstrates resistance to brown patch disease achieved by the application of host induced gene silencing. We transformed tall fescue with RNAi constructs of four experimentally determined “essential” genes from R. solani (including genes encoding RNA polymerase, importin beta-1 subunit, Cohesin complex subunit Psm1, and a ubiquitin E3 ligase) to suppress expression of those genes inside the fungus and thus inhibit fungal infection. Four gene constructs were tested, and 19 transgenic plants were obtained, among which 12 plants had detectable accumulation of siRNAs of the target genes. In inoculation tests, six plants displayed significantly improved resistance against R. solani. Lesion size was reduced by as much as 90 %. Plants without RNAi accumulation did not show resistance. To our knowledge, this is the first case that RNAi constructs of pathogen genes introduced into a host plant can confer resistance against a necrotrophic fungus.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Type III effectors AvrRpm1 and AvrRpt2 promote bacterial growth dependent on a COI1-mediated pathway in the absence of the RPM1 and RPS2 resistance proteins. Abstract The type III effectors, AvrRpm1 and AvrRpt2, promote bacterial virulence by suppressing host defense responses. The defense suppressing activities of AvrRpm1 and AvrRpt2 are best studied in the absence of the resistance proteins RPM1 and RPS2, which induce defense responses to them. We tested whether the type III effectors could modulate a CORONATINE INSENSITIVE1 (COI1)-mediated hormone signaling pathway to promote virulence. COI1 has been demonstrated to contribute in the induction of chlorosis during Pseudomonas syringae infection. By comparing the activity of inducibly expressed AvrRpm1-HA or AvrRpt2-HA in rpm1rps2 and rpm1rps2coi1 backgrounds, we demonstrate that both effectors promote bacterial growth dependent on a COI1-mediated pathway and additively with the action of coronatine (COR) and that AvrRpt2-HA induces COI1-dependent chlorosis. Further, PATHOGENESIS RELATED1 (PR-1) expression resulting from inducible expression of AvrRpm1-HA or AvrRpt2-HA is elevated in coi1 plants consistent with the effectors activating JA-signaling to antagonize SA-signaling. In addition, we found that AvrRpm1-HA or AvrRpt2-HA requires COI1 to promote bacterial growth through suppression of both SA-dependent and SA-independent defense responses. Collectively, these results indicate that type III effectors AvrRpm1 and AvrRpt2 promote bacterial virulence by targeting a COI1-dependent signaling pathway.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message OsVIL1 is associated with a PRC2-like complex through its fibronectin type III domain to activate flowering by suppressing OsLF under SD and delay flowering by inducing Ghd7 under LD. Abstract Polycomb repressive complex 2 (PRC2) inhibits the expression of target genes by modifying histone proteins. Although several genes that epigenetically regulate flowering time have been identified in Arabidopsis thaliana and rice (Oryza sativa), the molecular mechanism by which PRC2 affects flowering time has not been well understood in rice. We investigated the role of Oryza sativa VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL1), which is homologous to the flowering promoter OsVIL2. The reduction in OsVIL1 expression by RNA interference (RNAi) caused a late flowering phenotype under short days (SD). In the RNAi lines, OsLF expression was increased, but transcripts of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and RICE FLOWERING LOCUS T 1 (RFT1) were reduced. By contrast, OsVIL1-overexpressing (OX) transgenic lines displayed an early flowering phenotype under SD. Levels of OsLF transcript were reduced while those of Ehd1, Hd3a, and RFT1 were enhanced in the OX lines. Under long days (LD), the OsVIL1-OX lines flowered late and Grain number, plant height, and heading date 7 (Ghd7) expression was higher. We also demonstrated that the plant homeodomain region of OsVIL1 binds to native histone H3 in vitro. Our co-immunoprecipitation assays showed that OsVIL1 interacts with OsVIL2 and that the fibronectin type III domain of OsVIL1 is associated with O. sativa EMBRYONIC FLOWER 2b (OsEMF2b). We propose that OsVIL1 forms a PRC2-like complex to induce flowering by suppressing OsLF under SD but delay flowering by elevating Ghd7 expression under LD.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Acetic acid acts as a signal molecule, strongly enhancing xanthone biosynthesis in Hypericum perforatum root cultures. This activity is specific, as demonstrated by the comparison with other short-chain monocarboxylic acids. Abstract We have recently demonstrated that Hypericum perforatum root cultures constitutively produce xanthones at higher levels than the root of the plant and that they respond to chitosan (CHIT) elicitation with a noteworthy increase in xanthone production. In the present study, CHIT was administered to H. perforatum root cultures using three different elicitation protocols, and the increase in xanthone production was evaluated. The best results (550 % xanthone increase) were obtained by subjecting the roots to a single elicitation with 200 mg l−1 CHIT and maintaining the elicitor in the culture medium for 7 days. To discriminate the effect of CHIT from that of the solvent, control experiments were performed by administering AcOH alone at the same concentration used for CHIT solubilization. Unexpectedly, AcOH caused an increase in xanthone production comparable to that observed in response to CHIT. Feeding experiments with 13C-labeled AcOH demonstrated that this compound was not incorporated into the xanthone skeleton. Other short-chain monocarboxylic acids (i.e., propionic and butyric acid) have little or no effect on the production of xanthones. These results indicate that AcOH acts as a specific signal molecule, able to greatly enhance xanthone biosynthesis in H. perforatum root cultures.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Anti-microRNA oligonucleotides (AMOs) are efficient and sequence-specific inhibitors of plant miRNA function both in vitro and in vivo. Abstract MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in developmental and physiological processes in plants and animals. Although miRNA knockdown by chemically modified antisense oligonucleotides prevails in animal and therapeutic studies, no such application has ever been reported in plants. Here, we show that sucrose-mediated delivery of 2′-O-methyl (2′-O-Me) anti-miRNA oligonucleotides (AMOs) is an efficient and sequence-specific way of inhibiting plant miRNA activity both in vitro and in vivo. Administration of AMOs to rice protoplasts and intact leaves resulted in efficient inhibition of miRNAs with concurrent de-repression of their target genes. AMOs caused simultaneous inhibition of miRNAs from the same family but exerted negligible effects on miRNAs from different families. In rice seedlings, a single-dose AMO treatment conferred long-lasting miRNA inhibition for at least 7 days. Although simultaneous dysregulation of multiple miRNAs by an AMO-and-miRNA-mimic mixture resulted in severe root defects, the phenotypic effects of individual AMOs and miRNA mimics were negligible, suggesting that those miRNAs function together in regulatory networks to ensure homeostasis. Our results validate the utility of AMOs as an efficient tool for plant miRNA loss-of-function studies in vivo, and this approach may prove to be a highly promising general method for unraveling miRNA-mediated gene-regulatory networks.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message The heterodimer formation between B-class MADS-box proteins of GsAP3a and GsPI2 proteins plays a core role for petal formation in Japanese gentian plants. Abstract We previously isolated six B-class MADS-box genes (GsAP3a, GsAP3b, GsTM6, GsPI1, GsPI2, and GsPI3) from Japanese gentian (Gentiana scabra). To study the roles of these MADS-box genes in determining floral organ identities, we investigated protein–protein interactions among them and produced transgenic Arabidopsis and gentian plants overexpressing GsPI2 alone or in combination with GsAP3a or GsTM6. Yeast two-hybrid and bimolecular fluorescence complementation analyses revealed that among the GsPI proteins, GsPI2 interacted with both GsAP3a and GsTM6, and that these heterodimers were localized to the nuclei. The heterologous expression of GsPI2 partially converted sepals into petaloid organs in transgenic Arabidopsis, and this petaloid conversion phenomenon was accelerated by combined expression with GsAP3a but not with GsTM6. In contrast, there were no differences in morphology between vector-control plants and transgenic Arabidopsis plants expressing GsAP3a or GsTM6 alone. Transgenic gentian ectopically expressing GsPI2 produced an elongated tubular structure that consisted of an elongated petaloid organ in the first whorl and stunted inner floral organs. These results imply that the heterodimer formation between GsPI2 and GsAP3a plays a core role in determining petal and stamen identities in Japanese gentian, but other B-function genes might be important for the complete development of petal organs.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: A novel LcGST4 was identified and characterized from Litchi chinensis . Expression and functional analysis demonstrated that it might function in anthocyanin accumulation in litchi. Glutathione S-transferases (GSTs) have been defined as detoxification enzymes for their ability to recognize reactive electrophilic xenobiotic molecules as well as endogenous secondary metabolites. Anthocyanins are among the few endogenous substrates of GSTs for vacuolar accumulation. The gene encoding a GST protein that is involved in anthocyanin sequestration from Litchi chinensis Sonn. has not been reported. Here, LcGST4, an anthocyanin-related GST, was identified and characterized. Phylogenetic analysis showed that LcGST4 was clustered with other known anthocyanin-related GSTs in the same clade. Expression analysis revealed that the expression pattern of LcGST4 was strongly correlated with anthocyanin accumulation in litchi. ABA- and light-responsive elements were found in the LcGST4 promoter, which is in agreement with the result that the expression of LcGST4 was induced by both ABA and debagging treatment. A GST activity assay in vitro verified that the LcGST4 protein shared universal activity with the GST family. Functional complementation of an Arabidopsis mutant tt19 demonstrated that LcGST4 might function in anthocyanin accumulation in litchi. Dual luciferase assay revealed that the expression of LcGST4 was activated by LcMYB1, a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in litchi.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Three annexin genes may be involved in the ripening progress of strawberry fruit. Phytohormones and calcium regulate the expressions of three annexin genes during strawberry fruit ripening. Plant annexins are multi-functional membrane- and Ca(2+)-binding proteins that are involved in various developmental progresses and stress responses. Three annexins FaAnn5a, FaAnn5b and FaAnn8 cDNA obtained from strawberry fruit encode amino acid sequences of approximately 35 kDa containing four annexin repeats, Ca(2+)-binding site, GTP-binding motif, peroxidase residue, and conserved amino acid residues of tryptophan, arginine and cysteine. During fruit development, the transcript levels of FaAnn5a and FaAnn5b increased while FaAnn5b declined after 3/4R stage. The expression patterns of annexins suggested their potential roles in strawberry fruit development and ripening. Expressions of annexin genes were also highly correlated with hormone levels. In addition, exogenous abscisic acid (ABA) enhanced the expressions of FaAnn5a and FaAnn8 while exogenous auxin (IAA) retarded it. However, both ABA and IAA promoted the transcript levels of FaAnn5b, indicating the independent regulation of annexins in fruit likely due to multi-functions of their large family. The responses of annexin genes to exogenous ABA and IAA inhibitors verified the involvement of annexins in plant hormone signaling. Besides, calcium restrained the expressions of FaAnn5s (FaAnn5a and FaAnn5b) but promoted the expression of FaAnn8. Effects of calcium and ethylene glycol tetraacetic acid (EGTA) on the transcript levels of annexins confirmed that calcium likely mediated hormone signal transduction pathways, which helped to elucidate the mechanism of calcium in fruit ripening. Therefore, FaAnn5s and FaAnn8 might be involved in plant hormones' regulation in the development and ripening of strawberry fruit through calcium signaling in the downstream.
    No preview · Article · Jan 2016 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.
    No preview · Article · Dec 2015 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: JrGSTTau1 is an important candidate gene for plant chilling tolerance regulation. A tau subfamily glutathione S-transferase (GST) gene from Juglans regia (JrGSTTau1, GeneBank No.: KT351091) was cloned and functionally characterized. JrGSTTau1 was induced by 16, 12, 10, 8, and 6 °C stresses. The transiently transformed J. regia showed much greater GST, glutathione peroxidase (GPX), superoxide dismutase (SOD), and peroxidase (POD) activities and lower H2O2, malondialdehyde (MDA), reactive oxygen species (ROS), and electrolyte leakage (EL) rate than prokII (empty vector control) and RNAi::JrGSTTau1 under cold stress, indicating that JrGSTTau1 may be involved in chilling tolerance. To further confirm the role of JrGSTTau1, JrGSTTau1 was heterologously expressed in tobacco, transgenic Line5, Line9, and Line12 were chosen for analysis. The germinations of WT, Line5, Line9, and Line12 were similar, but the fresh weight, primary root length, and total chlorophyll content (tcc) of the transgenic lines were significantly higher than those of WT under cold stress. When cultivated in soil, the GST and SOD activities of transgenic tobacco were significantly higher than those of WT; however, the MDA and H2O2 contents of WT were on average 1.47- and 1.96-fold higher than those of Line5, Line9, and Line12 under 16 °C. The DAB, Evans blue, and PI staining further confirmed these results. Furthermore, the abundances of NtGST, MnSOD, NtMAPK9, and CDPK15 were elevated in 35S::JrGSTTau1 tobacco compared with WT. These results suggested that JrGSTTau1 improves the plant chilling tolerance involved in protecting enzymes, ROS scavenging, and stress-related genes, indicating that JrGSTTau1 is a candidate gene for the potential application in molecular breeding to enhance plant abiotic stress tolerance.
    No preview · Article · Dec 2015 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Salt-induced phosphorylation of MdVHA-B1 protein was mediated by MdSOS2L1 protein kinase, and thereby increasing malate content in apple. Salinity is an important environmental factor that influences malate accumulation in apple. However, the molecular mechanism by which salinity regulates this process is poorly understood. In this work, we found that MdSOS2L1, a novel AtSOS2-LIKE protein kinase, interacts with V-ATPase subunit MdVHA-B1. Furthermore, MdSOS2L1 directly phosphorylates MdVHA-B1 at Ser(396) site to modulate malate accumulation in response to salt stress. Meanwhile, a series of transgenic analyses in apple calli showed that the MdSOS2L1-MdVHAB1 pathway was involved in the regulation of malate accumulation. Finally, a viral vector-based transformation approach demonstrated that the MdSOS2L1-MdVHAB1 pathway also modulated malate accumulation in apple fruits with or without salt stress. Collectively, our findings provide a new insight into the mechanism by which MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.
    No preview · Article · Dec 2015 · Plant Cell Reports