Human Genetics (HUM GENET)

Publisher: Springer Verlag

Journal description

Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal welcomes articles in the areas of Gene structure and organization Gene expression Mutation detection and analysis Linkage analysis and genetic mapping Physical mapping Cytogenetics and Genomic Imaging Genome structure and organisation Disease association studies Molecular diagnostics Genetic epidemiology Evolutionary genetics Developmental genetics Genotype-phenotype relationships Molecular genetics of tumorigenesis Genetics of complex diseases and epistatic interactions and Bioinformatics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless they report entirely novel and unusual aspects of a topic clinical case reports cytogenetic case reports papers on descriptive population genetics articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described will normally not be accepted. The Journal will not normally consider for publication manuscripts that report merely the isolation map position structure and tissue expression profile of a gene of unknown function unless the gene is of unusual interest or is a candidate gene involved in a human trait or disorder. Data on novel pathological mutations may be submitted to Human Genetics Online the electronic mutation data submission system administered by Springer-Verlag (

Current impact factor: 4.82

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 4.824
2013 Impact Factor 4.522
2012 Impact Factor 4.633
2011 Impact Factor 5.069
2010 Impact Factor 5.047
2009 Impact Factor 4.523
2008 Impact Factor 4.042
2007 Impact Factor 3.974
2006 Impact Factor 3.662
2005 Impact Factor 4.331
2004 Impact Factor 4.328
2003 Impact Factor 4.022
2002 Impact Factor 3.429
2001 Impact Factor 3.209
2000 Impact Factor 3.422
1999 Impact Factor 3.145
1998 Impact Factor 2.826
1997 Impact Factor 2.662
1996 Impact Factor 2.455
1995 Impact Factor 2.551
1994 Impact Factor 2.758
1993 Impact Factor 2.666
1992 Impact Factor 2.877

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.52
Cited half-life 9.20
Immediacy index 1.47
Eigenfactor 0.02
Article influence 1.73
Website Human Genetics website
Other titles Human genetics (Online), Hum genet
ISSN 0340-6717
OCLC 41232248
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Split-hand/foot malformation 1 (SHFM1) is caused by chromosomal aberrations involving the region 7q21.3, DLX5 mutation, and dysregulation of DLX5/DLX6 expression by long-range position effects. SHFM1 can be isolated or syndromic with incomplete penetrance and a highly variable clinical expression, possibly influenced by sex and imprinting. We report on a new family with five affected individuals with syndromic SHFM1 that includes split-hand/foot malformations, hearing loss, and craniofacial anomalies, and an inv(7)(q21.3q35) present both in the proband and her affected son. The proximal inversion breakpoint, identified by next generation mate-pair sequencing, truncates the SHFM1 locus within the regulatory region of DLX5/6 expression. Through genotype-phenotype correlations of 100 patients with molecularly characterized chromosomal aberrations from 32 SHFM1 families, our findings suggest three phenotypic subregions within the SHFM1 locus associated with (1) isolated SHFM, (2) SHFM and hearing loss, and (3) SHFM, hearing loss, and craniofacial anomalies, respectively (ranked for increasing proximity to DLX5/6), and encompassing previously reported tissue-specific enhancers for DLX5/6. This uniquely well-characterized cohort of SHFM1 patients allowed us to systematically analyze the recently suggested hypothesis of skewed transmission and to confirm a higher penetrance in males vs. females in a subgroup of patients with isolated SHFM.
    No preview · Article · Feb 2016 · Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although epidemiological evidence suggests a human genetic basis of pulmonary tuberculosis (PTB) susceptibility, the identification of specific genes and alleles influencing PTB risk has proven to be difficult. Previous genome-wide association (GWA) studies have identified only three novel loci with modest effect sizes in sub-Saharan African and Russian populations. We performed a GWA study of 550,352 autosomal SNPs in a family-based discovery Moroccan sample (on the full population and on the subset with PTB diagnosis at <25 years), which identified 143 SNPs with p < 1 × 10−4. The replication study in an independent case/control sample identified four SNPs displaying a p < 0.01 implicating the same risk allele. In the combined sample including 556 PTB subjects and 650 controls these four SNPs showed suggestive association (2 × 10−6 < p < 4 × 10−5): rs358793 and rs17590261 were intergenic, while rs6786408 and rs916943 were located in introns of FOXP1 and AGMO, respectively. Both genes are involved in the function of macrophages, which are the site of latency and reactivation of Mycobacterium tuberculosis. The most significant finding (p = 2 × 10−6) was obtained for the AGMO SNP in an early (<25 years) age-at-onset subset, confirming the importance of considering age-at-onset to decipher the genetic basis of PTB. Although only suggestive, these findings highlight several avenues for future research in the human genetics of PTB.
    No preview · Article · Jan 2016 · Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Golgi apparatus (GA) is a membrane-bound organelle that serves a multitude of critical cellular functions including protein secretion and sorting, and cellular polarity. Many Mendelian diseases are caused by mutations in genes encoding various components of GA. GOLGA2 encodes GM130, a necessary component for the assembly of GA as a single complex, and its deficiency has been found to result in severe cellular phenotypes. We describe the first human patient with a homozygous apparently loss of function mutation in GOLGA2. The phenotype is a neuromuscular disorder characterized by developmental delay, seizures, progressive microcephaly, and muscular dystrophy. Knockdown of golga2 in zebrafish resulted in severe skeletal muscle disorganization and microcephaly recapitulating loss of function human phenotype. Our data suggest an important developmental role of GM130 in humans and zebrafish.
    No preview · Article · Jan 2016 · Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified eight candidate thinness predisposition variants from the Illumina HumanExome chip genotyped on members of pedigrees selected for either healthy thinness or severe obesity. For validation, we tested the candidates for association with healthy thinness in additional pedigree members while accounting for effects of obesity-associated genes: NPFFR2, NPY2R, FTO, and MC4R. Significance was obtained for the interaction of FTO rs9939609 with APOH missense variant rs52797880 (minor allele frequency 0.054). The thinness odds ratio was estimated as 2.15 (p < 0.05) for the combination of APOH heterozygote with the homozygote for the non-obesity FTO allele. Significance was not obtained for any other combination of a candidate variant with an obesity gene or for any of the eight candidates tested independently.
    No preview · Article · Dec 2015 · Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurately estimating the distribution and heritability of SNP effects across the genome could help explain the mystery of missing heritability. In this study, we propose a novel statistical method for estimating the distribution and heritability of SNP effects from genome-wide association studies (GWASs), and compare its performance to several existing methods using both simulations and real data. Specifically, we study the full range of GWAS summary results and link observed p values and unobserved effect sizes by (non-central) Chi-square distribution. By modeling the observed full set of association signals using a multinomial distribution, we build a likelihood function of SNP effect sizes using parametric and non-parametric maximum likelihood frameworks. Simulation studies show that the proposed method can accurately estimate effect sizes and the number of associated SNPs. As real applications, we analyze publicly available GWAS summary results for height, body mass index (BMI), and bone mineral density (BMD). Our analyses show that there are over 10,000 SNPs that might be associated with height, and the total heritability attributable to these SNPs exceeds 70 %. The heritabilities for BMI and BMD are ~10 and ~15 %, respectively. The results indicate that the proposed method has the potential to improve the accuracy of estimates of heritability and effect size for common SNPs in large-scale GWAS meta-analyses. These improved estimates may contribute to an enhanced understanding of the genetic basis of complex traits.
    No preview · Article · Dec 2015 · Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphangioleiomyomatosis (LAM) (MIM #606690) is a rare lung disorder leading to respiratory failure associated with progressive cystic destruction due to the proliferation and infiltration of abnormal smooth muscle-like cells (LAM cells). LAM can occur alone (sporadic LAM, S-LAM) or combined with tuberous sclerosis complex (TSC-LAM). TSC is caused by a germline heterozygous mutation in either TSC1 or TSC2, and TSC-LAM is thought to occur as a result of a somatic mutation (second hit) in addition to a germline mutation in TSC1 or TSC2 (first hit). S-LAM is also thought to occur under the two-hit model involving a somatic mutation and/or loss of heterozygosity in TSC2. To identify TSC1 or TSC2 changes in S-LAM patients, the two genes were analyzed by deep next-generation sequencing (NGS) using genomic DNA from blood leukocytes (n = 9), LAM tissue from lung (n = 7), LAM cultured cells (n = 4), or LAM cell clusters (n = 1). We identified nine somatic mutations in six of nine S-LAM patients (67 %) with mutant allele frequencies of 1.7-46.2 %. Three of these six patients (50 %) showed two different TSC2 mutations with allele frequencies of 1.7-28.7 %. Furthermore, at least five mutations with low prevalence (<20 % of allele frequency) were confirmed by droplet digital PCR. As LAM tissues are likely to be composed of heterogeneous cell populations, mutant allele frequencies can be low. Our results confirm the consistent finding of TSC2 mutations in LAM samples, and highlight the benefit of laser capture microdissection and in-depth allele analyses for detection, such as NGS.
    No preview · Article · Nov 2015 · Human Genetics