Brazilian Journal of Chemical Engineering (BRAZ J CHEM ENG)

Publisher: Associação Brasileira de Engenharia Química

Journal description

Covers current research relating to all aspects of chemical engineering.

Current impact factor: 1.04

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 1.043
2013 Impact Factor 0.912
2012 Impact Factor 0.894
2011 Impact Factor 0.637
2010 Impact Factor 0.811
2009 Impact Factor 0.571
2008 Impact Factor 0.475
2007 Impact Factor 0.448
2006 Impact Factor 0.377
2005 Impact Factor 0.385
2004 Impact Factor 0.212
2003 Impact Factor 0.355
2002 Impact Factor 0.16
2001 Impact Factor 0.184

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.23
Cited half-life 6.40
Immediacy index 0.09
Eigenfactor 0.00
Article influence 0.25
Website Brazilian Journal of Chemical Engineering website
ISSN 0104-6632
OCLC 46982461
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal


  • No preview · Article · Jul 2016 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central composite rotatable design (CCRD) and artificial neural networks (ANN) have been applied to optimize the performance of nanofluid systems. In this regard, the performance was evaluated by measuring the stability and thermal conductivity ratio based on the critical independent variables such as temperature, particle volume fraction and the pH of the solution. A total of 20 experiments were accomplished for the construction of second-order polynomial equations for both target outputs. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). According to the results, the predicted values were in reasonable agreement with the experimental data as more than 96% and 95% of the variation could be predicted by the respective models for zeta potential and thermal conductivity ratio. Also, ANN proved to be a very promising method in comparison with CCD for the purpose of process simulation due to the complexity involved in generalization of the nanofluid system.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source

    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Verapamil is a chiral drug that is marketed in its racemic form, but because of the pharmacological effects due to molecule’s chirality, one of the enantiomers is more potent, and the other exhibits different activities of therapeutic interest. The preparative separation of the verapamil enantiomers was performed using a continuous Varicol unit operated on a scale of 1 g/day. Amylose tris(3,5-dimethylphenylcarbamate) functioned as the stationary phase, and n-hexane/isopropanol/ethanol mixtures were used as the mobile phase. Diethylamine was used as the additive. The enantiomeric purities were 93.0% for S-(-)-verapamil and 92.0% for R-(+)-verapamil in the raffinate and extract streams, respectively. The unit provided productivities of 0.18 kg of raffinate per day per kg of adsorbent and 0.20 kg of extract per day per kg of adsorbent when using a feed concentration of 12.5 g L-1.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Catalytic Wet Air Oxidation (CWAO) of phenol using copper oxide catalysts supported by γ-Al2O3, TiO2, and pillared clay was evaluated to identify which of these catalysts was the most appropriate for this reaction. The CuO/PILC, CuO/γ-Al2O3 and CuO/TiO2 catalysts were the most successful at removing phenol and resulted in more than 96% conversion. Among these catalysts, CuO/γ-Al2O3 produced the largest amount of CO2, the lowest amount of intermediate products and the lowest amount of copper leaching. These results showed that the CuO/γ-Al2O3catalyst was the best for the end of the reaction. However, the methods used in this study did not allow us to identify the most appropriate reaction time (or catalyst). An alternative approach for this problem was to quantify the costs for each reaction time. Using this approach, the CuO/γ-Al2O3 catalyst was the most economically favorable catalyst when it was used during the first hour of the reaction.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinetics of the extraction of tea seed oil with supercritical CO2was studied. A kinetic model of the extraction of tea seed oil using supercritical CO2 was developed on the basis of the differential mass balance to simulate the extraction process. The model could simulate the distribution of the solute concentration in CO2 inside the extraction bed as a function of extraction time and height of the extraction bed. The model could also simulate of the solute concentration in CO2 at the outlet of the extractor as a function of time. The effects of the parameters such as pressure and temperature on extraction yield and the process were investigated through the model. This model could simulate satisfactorily the process of extraction with an error between simulation data and experimental data of less than 10%.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The removal of water content present in fuels such as biodiesel and diesel is quite important to adequate the fuel to standards for commercialization and to avoid corrosion of storage tanks and injection equipment in diesel engines. In this study, hydrophilic hydrogels were employed to remove the water content in biodiesel and diesel fuel samples. The results showed that the hydrogels were capable of decreasing the free water content and also the soluble water content present in the samples. The highest decrease of total water content in samples of biodiesel was 53.3% wt and for diesel samples the reduction of water content was 32.0%, starting with samples that had 2160 ppm and 240 ppm of water, respectively. The highest decrease of total water content (free and soluble water) for diesel samples was 80.4% wt, from a diesel sample initially containing 348 ppm of total water content.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides a feasibility study of azeotropic mixture separation based on a topological analysis combining thermodynamic knowledge of residue curve maps, univolatility and unidistribution curves, and extractive profiles. Thermodynamic topological features related to process operations for typical ternary diagram classes 1.0-2 are, for the first time, discussed. Separating acetone/chloroform is presented as an illustrative example; different entrainers are investigated: several heavy ones, a light one, and water, covering the Serafimov classes 1.0-2, 1.0-1a and 3.1-4, respectively. The general feasibility criterion that was previously established for ternary mixtures including only one azeotrope (1.0-1a or 1.0-2) is now, for the first time, extended to that including three azeotropes (class 3.1–4).
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microemulsion systems were used to remove chromium from an aqueous solution obtained from acid digestion of tannery sludge. The systems were composed by: coconut oil soap as surfactant, 1-butanol as cosurfactant, kerosene as the oil phase, and chromium solution as the aqueous phase. Two- and three-phase microemulsion extraction methods were investigated in the experiments. Viscosity, effective diameter of the droplets, and extraction and re-extraction efficiencies were evaluated for each system. Two- and three-phase systems showed small variations in droplet diameter, which can be attributed to the formation of micellar structures. Chromium recovery efficiencies for the studied systems were over 96%. The re-extraction step showed that the stripping solution used can release more than 96% of the chromium from the microemulsion phase. Experimental results confirm that chromium can be recovered efficiently using microemulsion systems.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experiments were conducted in a liquid-solid circulating fluidized bed with different viscous liquids and particles to study the hydrodynamics, average solid hold up and solid circulation rate. The effects of operating parameters, i.e., primary liquid flow rate in the riser, auxiliary liquid flow rate, total liquid flow rate and viscosity of the liquid were studied for solids of different density and particle size. Results show that the circulating fluidization regime starts earlier for more viscous solutions because of the decrease in critical transitional velocity. The onset of solid holdup increases with an increase in liquid viscosity for sand and for glass beads. The solid circulation rate increases with an increase in total velocity and auxiliary velocity, and also increases with increasing viscosity.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work describes the hydrodynamics of a plate column of 5 cm inner diameter and 2.75 m height, operated in a semi-batch manner using an oil-water system especially important for enzymatic catalyzed reactions. The parameters such as dispersed phase superficial velocity, plate orifice size, number of nozzles, nozzle size and plate spacing, affecting the dispersed phase hold up, were investigated. It was observed that the orifice plate produced an uneven change in drop diameter and hence nozzles were used to study the hydrodynamics. The total and dynamic hold ups determined were increased with an increase in dispersed phase superficial velocity, while decreased with an increase in a nozzle size. The total hold up decreased, while dynamic hold up slightly increased with an increase in plate spacing. Correlations obtained are found to be appropriate for the estimation of the total hold up and dynamic hold up.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liquid flow in the impeller swept region of vessels with a turbine-type agitator was examined for the flow path between the neighboring blades of the rotating impeller. Visualization of the flow and its measurement were done using particle tracking velocimetry with a camera rotating along with the impeller. Internal liquid flow of the impeller differed when the velocity magnitudes were compared in conditions with and without baffles. Larger circumferential and radial velocities were observed without the baffles and with the baffles, respectively, which was considered to result in the difference of impeller power transmission. Efficiencies produced, based on the flow-head concept, reflected the impeller power characteristics. The turbine-type impeller as an actuator was demonstrated to improve in the flow characteristics with viscous losses increased by the baffles. In terms of impeller efficiencies based on the power consumption, the effect of baffles for the energy was as a decreased transmission and an increased transport.
    Preview · Article · Dec 2015 · Brazilian Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dissolved gas analysis (DGA) has been applied for decades as the main predictive maintenance technique for diagnosing incipient faults in power transformers since the decomposition of the mineral insulating oil (MIO) produces gases that remain dissolved in the liquid phase. Nevertheless, the most known diagnostic methods are based on findings of simplified thermodynamic and compositional models for the thermal decomposition of MIO, in addition to empirical data. The simulation results obtained from these models do not satisfactorily reproduce the empirical data. This paper proposes a flexible thermodynamic model enhanced with a kinetic approach and selects, among four compositional models, the one offering the best performance for the simulation of thermal decomposition of MIO. The simulation results obtained from the proposed model showed better adequacy to reported data than the results obtained from the classical models. The proposed models may be applied in the development of a phenomenologically-based diagnostic method.
    Preview · Article · Sep 2015 · Brazilian Journal of Chemical Engineering