Journal of Pharmaceutical Sciences (J PHARM SCI-US)

Publisher: American Pharmaceutical Association; American Pharmacists Association; Fédération internationale pharmaceutique, Wiley

Journal description

The Journal of Pharmaceutical Sciences will publish original research papers original research notes invited topical reviews (including Minireviews) and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals including crystallization lyophilization chemical stability of drugs pharmacokinetics biopharmaceutics pharmacodynamics pro-drug developments metabolic disposition of bioactive agents dosage form design protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology and targeted drug delivery.

Current impact factor: 2.59

Impact Factor Rankings

2016 Impact Factor Available summer 2017
2014 / 2015 Impact Factor 2.59
2013 Impact Factor 3.007
2012 Impact Factor 3.13
2011 Impact Factor 3.055
2010 Impact Factor 3.031
2009 Impact Factor 2.906
2008 Impact Factor 2.996
2007 Impact Factor 2.942
2006 Impact Factor 2.228
2005 Impact Factor 2.237
2004 Impact Factor 2.18
2003 Impact Factor 2.07
2002 Impact Factor 1.992
2001 Impact Factor 2.117
2000 Impact Factor 2.095
1999 Impact Factor 2.27
1998 Impact Factor 1.764
1997 Impact Factor 1.543

Impact factor over time

Impact factor

Additional details

5-year impact 3.07
Cited half-life 9.30
Immediacy index 0.38
Eigenfactor 0.02
Article influence 0.70
Website Journal of Pharmaceutical Sciences website
Other titles Journal of pharmaceutical sciences
ISSN 0022-3549
OCLC 1754726
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • Non-Commercial
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Literature and experimental data relevant for the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing levetiracetam are reviewed. Data on solubility and permeability suggest that levetiracetam belongs to class I of the biopharmaceutical classification system (BCS). Levetiracetam's therapeutic use, its wide therapeutic index, and its favorable pharmacokinetic properties make levetiracetam a valid candidate for the BCS-based biowaiver approach. Further, no BE studies with levetiracetam IR formulations in which the test formulation failed to show BE with the comparator have been reported in the open literature. On the basis of the overall evidence, it appears unlikely that a BCS-based biowaiver approach for levetiracetam IR solid oral dosage forms formulated with established excipients would expose patients to undue risks. Thus, the BCS-based biowaiver approach procedure is recommended for IR solid oral dosage form containing levetiracetam, provided the excipients in the formulation are also present in products that have been approved in countries belonging to or associated with the International Committee on Harmonization and are used in their usual quantities, and provided the dissolution profiles of the test and reference product comply with the current requirements for BCS-based biowaivers. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci
    No preview · Article · Feb 2015 · Journal of Pharmaceutical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a modified complex of pDNA and poly-l-lysine (PLL) by the addition of poly-l-histidine (PLH) and γ-polyglutamic acid (γ-PGA) to enhance its pH-buffering effect and suppress cytotoxicity. The binary and ternary complexes of pDNA with PLL or/and PLH showed particle sizes of approximately 52-76 nm with cationic surface charge. The ternary complexes showed much higher gene expression than the binary complexes with PLL. The mixed solution of PLL and PLH showed higher buffering capacity than PLL solution. The high gene expression of ternary complexes was reduced by bafilomycin A1 . These results indicated the addition of PLH to PLL complexes promoted endosomal escape by enhancing the pH-buffering effect. The binary and ternary complexes showed cytotoxicity and blood agglutination because of their cationic surface charge. We therefore developed quaternary complexes by the addition of anionic γ-PGA, which was reported to decrease the toxicity of cationic complexes. In fact, quaternary complexes showed no cytotoxicity and blood agglutination. Also, quaternary complexes showed higher gene expression than ternary complexes regardless of their anionic surface charge. Quaternary complexes showed selectively high gene expression in the spleen after their intravenous administration. Thus, we successfully developed the quaternary complexes with high gene expression and no toxicity. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
    No preview · Article · Feb 2015 · Journal of Pharmaceutical Sciences

  • No preview · Article · Feb 2015 · Journal of Pharmaceutical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
    No preview · Article · Jan 2015 · Journal of Pharmaceutical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: An experimental technique is presented to determine independently shrinkage and cracking in lyophilized amorphous cakes based on photographic imaging of their top surface. An inverse correlation between cake shrinkage and cracking during freeze-drying is seen. Shrinkage relaxes the drying tension and gives little cracking, whereas if shrinkage is restrained then more cracking occurs. A lower shrinkage and greater cracking with higher disaccharide concentration correlates with change in cake hardness and brittleness. Adhesion of the cake to the inside vial wall could not be identified as a determining factor for shrinkage. Shrinkage is non-uniform across the cake's surface and is manifested largely in the peripheral region. A correlation between shrinkage and wg ' for different disaccharides suggests that drying tension develops as non-frozen water is lost from the porous solid after sublimation of the ice phase has exposed the solid/gas interface. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
    No preview · Article · Jan 2015 · Journal of Pharmaceutical Sciences